Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-quasi-transitive digraph" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Hamiltonian Cycle Problem in Strong k-Quasi-Transitive Digraphs with Large Diameter
Autorzy:
Wang, Ruixia
Powiązania:
https://bibliotekanauki.pl/articles/32083906.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
quasi-transitive digraph
k -quasi-transitive digraph
Hamiltonian cycle
Opis:
Let k be an integer with k ≥ 2. A digraph is k-quasi-transitive, if for any path x0x1... xk of length k, x0 and xk are adjacent. Let D be a strong k-quasi-transitive digraph with even k ≥ 4 and diameter at least k +2. It has been shown that D has a Hamiltonian path. However, the Hamiltonian cycle problem in D is still open. In this paper, we shall show that D may contain no Hamiltonian cycle with k ≥ 6 and give the sufficient condition for D to be Hamiltonian.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 685-690
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
4-Transitive Digraphs I: The Structure of Strong 4-Transitive Digraphs
Autorzy:
Hernández-Cruz, César
Powiązania:
https://bibliotekanauki.pl/articles/30146649.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
transitive digraph
quasi-transitive digraph
4-transitive digraph
k-transitive digraph
k-quasi-transitive digraph
Opis:
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is transitive if for every three distinct vertices u, v,w ∈ V (D), (u, v), (v,w) ∈ A(D) implies that (u,w) ∈ A(D). This concept can be generalized as follows: A digraph is k-transitive if for every u, v ∈ V (D), the existence of a uv-directed path of length k in D implies that (u, v) ∈ A(D). A very useful structural characterization of transitive digraphs has been known for a long time, and recently, 3-transitive digraphs have been characterized. In this work, some general structural results are proved for k-transitive digraphs with arbitrary k ≥ 2. Some of this results are used to characterize the family of 4-transitive digraphs. Also some of the general results remain valid for k-quasi-transitive digraphs considering an additional hypothesis. A conjecture on a structural property of k-transitive digraphs is proposed.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 247-260
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some remarks on the structure of strong $k$-transitive digraphs
Autorzy:
Hernández-Cruz, César
Montellano-Ballesteros, Juan José
Powiązania:
https://bibliotekanauki.pl/articles/30148710.pdf
Data publikacji:
2014-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
transitive digraph
k-transitive digraph
quasi-transitive digraph
k-quasi-transitive digraph
Laborde-Payan-Xuong Conjecture
Opis:
A digraph $D$ is $k$-transitive if the existence of a directed path ($v_0, v_1, . . ., v_k$), of length $k$ implies that ($v_0, v_k) ∈ A(D)$. Clearly, a 2-transitive digraph is a transitive digraph in the usual sense. Transitive digraphs have been characterized as compositions of complete digraphs on an acyclic transitive digraph. Also, strong 3 and 4-transitive digraphs have been characterized. In this work we analyze the structure of strong $k$-transitive digraphs having a cycle of length at least $k$. We show that in most cases, such digraphs are complete digraphs or cycle extensions. Also, the obtained results are used to prove some particular cases of the Laborde-Payan-Xuong Conjecture.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 4; 651-671
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Complexity of the 3-Kernel Problem in Some Classes of Digraphs
Autorzy:
Hell, Pavol
Hernández-Cruz, César
Powiązania:
https://bibliotekanauki.pl/articles/30147225.pdf
Data publikacji:
2014-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
3-kernel
NP-completeness
multipartite tournament
cyclically 3-partite digraphs
k-quasi-transitive digraph
Opis:
Let D be a digraph with the vertex set V (D) and the arc set A(D). A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V (D) − N there exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent and (k − 1)-absorbent subset of V (D). A 2-kernel is called a kernel. It is known that the problem of determining whether a digraph has a kernel (“the kernel problem”) is NP-complete, even in quite restricted families of digraphs. In this paper we analyze the computational complexity of the corresponding 3-kernel problem, restricted to three natural families of digraphs. As a consequence of one of our main results we prove that the kernel problem remains NP-complete when restricted to 3-colorable digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 1; 167-185
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
k-kernels in generalizations of transitive digraphs
Autorzy:
Galeana-Sánchez, Hortensia
Hernández-Cruz, César
Powiązania:
https://bibliotekanauki.pl/articles/743887.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
kernel
(k,l)-kernel
k-kernel
transitive digraph
quasi-transitive digraph
right-pretransitive digraph
left-pretransitive digraph
pretransitive digraph
Opis:
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.
A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N, u ≠ v, then d(u,v), d(v,u) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are generalizations of transitive digraphs. In this paper the following results are proved: Let D be a right-(left-) pretransitive strong digraph such that every directed triangle of D is symmetrical, then D has a k-kernel for every integer k ≥ 3; the result is also valid for non-strong digraphs in the right-pretransitive case. We also give a proof of the fact that every quasi-transitive digraph has a (k,l)-kernel for every integers k > l ≥ 3 or k = 3 and l = 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 293-312
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies