Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-NN rule" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Pattern recognition approach for analysis of metabolic response to intermittent hypoxia
Autorzy:
Sokołowska, B.
Jóźwik, A.
Powiązania:
https://bibliotekanauki.pl/articles/333610.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
zasada k-NN
przerywane niedotlenienie
metaboliczna odpowiedź
pattern recognition
k-NN rule
pair-wise classifier
intermittent hypoxia
metabolic response
Opis:
Intermittent hypoxia (IH) elicits two forms of respiratory plasticity, which are initiated during and after exposure to IH, i.e. a long-term facilitation and a progressive augmentation of respiratory motor output. IH is often used as a model of sleep apnea and/or respiratory plasticity in humans and animals. Procedures of IH are also applied in sport medicine and rehabilitation of respiratory diseases. The aim of the present paper is an analysis of a metabolic response to acute intermittent hypoxia in a rat model. The animals were placed and monitored in a whole body plethysmographic chamber. The rats were exposed to five consecutive cycles consisting of 10-min hypoxic stimulus period separated by 10-min normoxic intervals, and additionally they were monitored up to 1 h after the final hypoxic exposure. The metabolism software analyzer recorded following variables (features): metabolic rate, carbon dioxide production, oxygen consumption and respiratory quotient. The obtained results demonstrated that acute IH causes metabolic effects during and after intermittent stimuli, which may be effectively recognized by an application of the k-NN classifiers.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 177-183
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of pathological states in arterial blood by distance based techniques
Autorzy:
Sokołowska, B.
Jóźwik, A.
Powiązania:
https://bibliotekanauki.pl/articles/333231.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
gazometria krwi tętniczej
paraliż przepony
zasada k-NN
klasyfikatory
arterial blood gasometry
paralysis of diaphragm
k-NN rule
classifiers
k-means algorithm
Opis:
The paper presents the application of some distance based pattern recognition algorithms for recognition of pathological states in respiratory system on the basis of the arterial blood gasometry (features pH, pCO2, pO2). In our biological model two experimental situations were considered: 1) the intact animals and 2) the main inspiratory muscles paralyzed (after acute of bilateral phrenicotomy). The comparison of the mentioned three features in the two conditions was the main goal of the present study. The analyzed biological data set contained 38 in class 1 (muscle function preserved) and 36 in class 2 (after diaphragm paralyzed) measurements. It was discovered that a significant part of the measurements could be correctly recognized as the ones coming from the first or the second class according to gasometric measurements.
Źródło:
Journal of Medical Informatics & Technologies; 2003, 5; MI23-30
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some problems with construction of the k-NN classifier for recognition of an experimental respiration pathology
Autorzy:
Jóźwik, A.
Sokołowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/332910.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
klasyfikacja nadzorowana
zasada k-NN
wybór funkcji
oddychanie
wentylacja
paraliż
przepona
pattern recognition
supervised classification
k-NN rule
feature selection
respiration
ventilation
paralysis
diaphragm
Opis:
An objective of the work is to demonstrate some difficulties with construction of a classifier based on the k-NN rule. The standard k-NN classifier and the parallel k-NN classifier have been chosen as the two most powerful approaches. This kind of classifiers has been applied to automatic recognition of diaphragm paralysis degree. The classifier construction consists in determination of the number of nearest neighbors, selection of features and estimation of the classification quality. Three classes of muscle pathology, including the control class, and five ventilatory parameters are taken into account. The data concern a model of the diaphragm pathology in a cat. The animals were forced to breathe in three different experimental situations: air, hypercapnic and hypoxic conditions. A separate classifier is constructed for each kind of the mentioned situations. The calculation of the misclassification rate is based on the leave one out and on the testing set method. Several computational experiments are suggested for the correct feature selection, the classifier type choice and the misclassification probability estimation.
Źródło:
Journal of Medical Informatics & Technologies; 2002, 3; MI89-97
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The pair-wise linear classifier and the k-NN rule in application to ALS progression differentiation
Autorzy:
Sokołowska, B.
Jóźwik, A.
Niebroj-Dobosz, I.
Janik, P.
Powiązania:
https://bibliotekanauki.pl/articles/333011.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
wybór funkcji
klasyfikator liniowy
zasada k-NN
biomarkery
stwardnienie zanikowe boczne
pattern recognition
feature selection
linear classifier
k-NN rule
pair-wise classifier
biomarkers
amyotrophic lateral sclerosis
Opis:
The two kinds of classifier based on the k-NN rule, the standard and the parallel version, were used for recognition of severity of ALS disease. In case of the second classifier version, feature selection was done separately for each pair of classes. The error rate, estimated by the leave one out method, was used as a criterion as for determination the optimum values of k's as well as for feature selection. All features selected in this manner were used in the standard and in the parallel classifier based on k-NN rule. Furthermore, only for the verification purpose, the linear classifier was applied. For this kind of classifier the error rates were calculated by use the training set also as a testing one. The linear classifier was trained by the error correction algorithm with a modified stop condition. The data set concerned with the healthy subjects and patients with amyotrophic lateral sclerosis (ALS). The set of several biomarkers such as erythropoietin, matrix metalloproteinases and their tissue inhibitors measured in serum and cerebrospinal fluid (CSF) were treated as features. It was shown that CSF biomarkers were very sensitive for the ALS progress.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 20; 79-83
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies