Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "job shop problem" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Optimizing the Job Shop Scheduling Problem with a no Wait Constraint by Using the Jaya Algorithm Approach
Autorzy:
Bougloula, Aimade Eddine
Powiązania:
https://bibliotekanauki.pl/articles/24200517.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
scheduling
optimization
scheduling problem
job shop
no-wait problem
Jaya algorithm
Opis:
This work is interested to optimize the job shop scheduling problem with a no wait constraint. This constraint occurs when two consecutive operations in a job must be processed without any waiting time either on or between machines. The no wait job shop scheduling problem is a combinatorial optimization problem. Therefore, the study presented here is focused on solving this problem by proposing strategy for making Jaya algorithm applicable for handling optimization of this type of problems and to find processing sequence that minimizes the makespan (Cmax). Several benchmarks are used to analyze the performance of this algorithm compared to the best-known solutions.
Źródło:
Management and Production Engineering Review; 2023, 14, 3; 148--155
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-criteria human resources planning optimisation using genetic algorithms enhanced with MCDA
Autorzy:
Jurczak, Marcin
Miebs, Grzegorz
Bachorz, Rafał A.
Powiązania:
https://bibliotekanauki.pl/articles/2204085.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
mathematical optimisation
multi-criteria optimisation
scheduling
job shop problem
MCDA
Opis:
The main objective of this paper is to present an example of the IT system implementation with advanced mathematical optimisation for job scheduling. The proposed genetic procedure leads to the Pareto front, and the application of the multiple criteria decision aiding (MCDA) approach allows extraction of the final solution. Definition of the key performance indicator (KPI), reflecting relevant features of the solutions, and the efficiency of the genetic procedure provide the Pareto front comprising the representative set of feasible solutions. The application of chosen MCDA, namely elimination et choix traduisant la réalité (ELECTRE) method, allows for the elicitation of the decision maker (DM) preferences and subsequently leads to the final solution. This solution fulfils all of the DM expectations and constitutes the best trade-off between considered KPIs. The proposed method is an efficient combination of genetic optimisation and the MCDA method.
Źródło:
Operations Research and Decisions; 2022, 32, 4; 57--74
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Job Shop Scheduling Problem by Genetic Algorithms: Case Study
Autorzy:
Sahar, Habbadi
Herrou, Brahim
Sekkat, Souhail
Powiązania:
https://bibliotekanauki.pl/articles/24200523.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
optimization
metaheuristics
scheduling
job shop scheduling problem
genetic algorithms
simulation
Opis:
The Job Shop scheduling problem is widely used in industry and has been the subject of study by several researchers with the aim of optimizing work sequences. This case study provides an overview of genetic algorithms, which have great potential for solving this type of combinatorial problem. The method will be applied manually during this study to understand the procedure and process of executing programs based on genetic algorithms. This problem requires strong decision analysis throughout the process due to the numerous choices and allocations of jobs to machines at specific times, in a specific order, and over a given duration. This operation is carried out at the operational level, and research must find an intelligent method to identify the best and most optimal combination. This article presents genetic algorithms in detail to explain their usage and to understand the compilation method of an intelligent program based on genetic algorithms. By the end of the article, the genetic algorithm method will have proven its performance in the search for the optimal solution to achieve the most optimal job sequence scenario.
Źródło:
Management and Production Engineering Review; 2023, 14, 3; 44--56
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies