- Tytuł:
- The general differential-geometric structure of multidimensional Delsarte transmutation operators in parametric functional spaces and their applications in soliton theory. Pt. 2
- Autorzy:
-
Golenia, J.
Prykarpatsky, Y.A.
Samoilenko, A.M.
Prykarpatsky, A.K. - Powiązania:
- https://bibliotekanauki.pl/articles/2050173.pdf
- Data publikacji:
- 2004
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
Delsarte transmutation operators
parametric functional spaces
Darboux transformations
inverse spectral transform problem
soliton equations
Zakharov-Shabat equations
polynomial operator pencils - Opis:
- The structure properties of multidimensional Delsarte transmutation operators in parametric functional spaces are studied by means of differential-geometric tools. It is shown that kernels of the corresponding integral operator expressions depend on the topological structure of related homological cycles in the coordinate space. As a natural realization of the construction presented we build pairs of Lax type commutive differential operator expressions related via a Darboux-Backlund transformation having a lot of applications in soliton theory. Some results are also sketched concerning theory of Delsarte transmutation operators for affine polynomial pencils of multidimensional differential operators.
- Źródło:
-
Opuscula Mathematica; 2004, 24, 1; 71-83
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki