- Tytuł:
- Circle criterion and boundary control systems in factor form: input-output approach
- Autorzy:
-
Grabowski, P.
Callier, F. M. - Powiązania:
- https://bibliotekanauki.pl/articles/908133.pdf
- Data publikacji:
- 2001
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
układ sterowania
przepływy międzygałęziowe
infinite dimensional control systems
semigroups
input-output relations - Opis:
- A circle criterion is obtained for a SISO Lur'e feedback control system consisting of a nonlinear static sector-type controller and a linear boundary control system in factor form on an infinite-dimensional Hilbert state space H previously introduced by the authors (Grabowski and Callier, 1999). It is assumed for the latter that (a) the observation functional is infinite-time admissible, (b) the factor control vector satisfies a compatibility condition, and (c) the transfer function belongs to Hinfty(Pi+) and satisfies a frequency-domain inequality of the circle criterion type. We also require that the closed-loop system be well-posed, i.e. for any initial state x0in H the truncated input and output signals uT, yT belong to L2(0,T) for any T>0. The technique of the proof adapts Desoer-Vidyasagar's circle criterion method (Desoer and Vidyasagar, 1975, Ch.3, Secs.1 and 2, pp.37-43, Ch.5, Sec.2, pp.139-142 and Ch.6, Secs.3 and 4, pp.172-174]), and uses the input-output map developed by the authors (Grabowski and Callier, 2001). The results are illustrated by two transmission line examples: (a) that of the loaded distortionless RLCG type, and (b) that of the unloaded RC type. The conclusion contains a discussion on improving the results by the loop-transformation technique.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2001, 11, 6; 1387-1403
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki