Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "inflation components" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Czy dezagregacja indeksu cen poprawia prognozy polskiej inflacji?
Forecasting Inflation Components – Does it Help to Predict Polish Inflation?
Autorzy:
Baranowski, Paweł
Mazurek, Małgorzata
Nowakowski, Maciej
Raczko, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1827218.pdf
Data publikacji:
2010-03-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
prognozowanie
inflacja
subindeksy cen
agregacja
forecasting
inflation
inflation components
sectoral aggregation
Polska
Opis:
W dotychczasowych badaniach rozważa się celowość wykorzystania na cele prognostyczne danych o niższym stopniu agregacji (np. dla inflacji Hubrich, 2005; Reijer and Vlaar, 2006). W artykule badamy czy prognozowanie 12 subindeksów cen dóbr i usług konsumpcyjnych (komponentów inflacji), a następnie ich agregacja poprawia trafność prognozy inflacji. Prognozy inflacji oraz jej poszczególnych komponentów wyznaczymy przy pomocy modeli autoregresji (AR), średniej ruchomej (MA), wektorowej autoregresji (VAR) oraz autoregresji progowej (TAR). Otrzymane wyniki nie pozwalają jednoznacznie rozstrzygnąć postawionego problemu. Okazuje się, że dla modeli AR i TAR dezagregacja nie pozwala zmniejszyć błędów prognoz, dla modeli MA nie otrzymano jednoznacznych wskazań testów, zaś dla VAR zmniejsza błędy prognoz.
This paper examines whether forecasting CPI components improves CPI forecast. We exploit quarterly data for Poland, disaggregated into 12 components. We follow methodology used in previous studies for Euro Area (Hubrich, 2005; Reijer and Vlaar, 2006). AR, MA, TAR and unrestricted VAR models are estimated using recursive sample and aggregated into CPI. Using out-of-sample forecasts, these models are evaluated and compared to the benchmark -- equivalents for aggregate CPI. The evidence is mixed. VAR component-forecast outperform benchmark. Contrary to VAR, for AR and TAR models we do not find substantial gain from using disaggregated data. Results for MA models are not robust. Moreover, it seems that results for AR- and VAR-based forecasts are comparable to consensus forecast.
Źródło:
Przegląd Statystyczny; 2010, 57, 1; 17-33
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie wybranego subindeksu CPI przy użyciu danych Google Trends
Forecasting transport inflation using Google Trends
Autorzy:
Marynowska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/585573.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza czynnikowa
Google Trends
Inflacja
Prognozowanie
Wskaźnik cen towarów i usług konsumpcyjnych
Consumer price index (CPI)
Forecasting
Inflation
Principal components
Opis:
Prognozy inflacji mają bezpośredni wpływ na prowadzenie polityki monetarnej państwa oraz odgrywają dużą rolę w uświadamianiu społeczeństwa o potrzebie wprowadzenia ewentualnych zmian w sposobie jej prowadzenia. W celu zapewnienia trafności konstruowanych prognoz stale poszukuje się zmiennych, które istotnie wpływają na inflację. Celem artykułu jest sprawdzenie, czy dane udostępniane przez serwis Google Trends mogą poprawić dokładność prognoz komponentów CPI związanych z sektorem transportowym. Dla każdego z subindeksów zbudowano modele prognostyczne uwzględniające zmienne wpływające na poziom wybranych cen, modele wzbogacone o hasła z wyszukiwarki Google i modele zawierające w swojej specyfikacji wspólne czynniki opisujące zmienność 32 wybranych haseł Google.
Inflation forecasts determine the monetary policy and can be treated as a way of raising society’s awareness of the fact that it needs certain adjustments. Experts continuously seek for the adequate variables that affect the level of inflation. In this paper the author examines whether Google Trends improve forecast of three chosen CPI components related to transport. The Author created a prognostic model for each of the components. Created models include: independent variables such as oil price and rate of excise duty, chosen variables together with statistics provided by Google Trends or principal components (explaining 32 google variables’ volatility) accordingly.
Źródło:
Studia Ekonomiczne; 2018, 375; 55-72
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies