Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "infinite dimensional control systems" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Small-gain theorem for a class of abstract parabolic systems
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/255288.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control of infinite-dimensional systems semigroups
infinite-time LQ-control problem
Lur'e feedback systems
Opis:
We consider a class of abstract control system of parabolic type with observation which the state, input and output spaces are Hilbert spaces. The state space operator is assumed to generate a linear exponentially stable analytic semigroup. An observation and control action are allowed to be described by unbounded operators. It is assumed that the observation operator is admissible but the control operator may be not. Such a system is controlled in a feedback loop by a controller with static characteristic being a globally Lipschitz map from the space of outputs into the space of controls. Our main interest is to obtain a perturbation theorem of the small-gain-type which guarantees that null equilibrium of the closed-loop system will be globally asymptotically stable in Lyapunov's sense.
Źródło:
Opuscula Mathematica; 2018, 38, 5; 651-680
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The LQ/KYP problem for infinite-dimensional systems
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/255449.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control of infinite-dimensional systems
semigroups
infinite-time LQ-control problem
Lur’e feedback systems
Opis:
Our aim is to present a solution to a general linear-quadratic (LQ) problem as well as to a Kalman-Yacubovich-Popov (KYP) problem for infinite-dimensional systems with bounded operators. The results are then applied, via the reciprocal system approach, to the question of solvability of some Lur'e resolving equations arising in the stability theory of infinite-dimensional systems in factor form with unbounded control and observation operators. To be more precise the Lur’e resolving equations determine a Lyapunov functional candidate for some closed-loop feedback systems on the base of some properties of an uncontrolled (open-loop) system. Our results are illustrated in details by an example of a temperature of a rod stabilization automatic control system.
Źródło:
Opuscula Mathematica; 2017, 37, 1; 21-64
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The lq-controller synthesis problem for infinite-dimensional systems in factor form
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/254801.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control of infinite-dimensional systems
semigroups
infinite-time lq-control problem
Opis:
The general lq-problem with infinite time horizon for well-posed infinite-dimensional systems has been investigated by George Weiss and Martin Weiss and by Olof Staffans with a complement by Kalle Mikkola and Olof Staffans. Our aim in this paper is to present a solution of a general lq-optimal controller synthesis problem for infinite-dimensional systems in factor form. The systems in factor form are an alternative to additive models, used in the theory of well-posed systems, which rely on leading the analysis exclusively within the basic state space. As a result of applying the simplified analysis in terms of the factor systems and an another derivation technique, we obtain an equivalent, however, astonishingly not the same formulae expressing the optimal controller in the time-domain and the method of spectral factorization. The results are illustrated by two examples of the construction of both the optimal control and optimal controller for some standard lq-problems met in literature: a control problem for a class of boundary controlled hyperbolic equations initiated by Chapelon and Xu, to which we give full solution and an example of the synthesis of the optimal control/controller for the standard lq-problem with infinite-time horizon met in the problem of improving a river water quality by artificial aeration, proposed by Zołopa and the author.
Źródło:
Opuscula Mathematica; 2013, 33, 1; 29-79
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The motion planning problem and exponential stabilization of a heavy chain. Part II
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/255394.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite-dimensional control systems
semigroups
motion planning problem
exponential stabilization
spectral methods
Riesz bases
exact observability
Opis:
This is the second part of paper [8], where a model of a heavy chain system with a punctual load (tip mass) in the form of a system of partial differential equations was interpreted as an abstract semigroup system and then analysed on a Hilbert state space. In particular, in [8] we have formulated the problem of exponential stabilizability of a heavy chain in a given position. It was also shown that the exponential stability can be achieved by applying a stabilizer of the colocated-type. The proof used the method of Lyapunov functionals. In the present paper, we give other two proofs of the exponential stability, which provides an additional intrinsic insight into the exponential stabilizability mechanism. The first proof makes use of some spectral properties of the system. In the second proof, we employ some relationships between exponential stability and exact observability.
Źródło:
Opuscula Mathematica; 2008, 28, 4; 481-505
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Well-posedness and stability analysis of hybrid feedback systems using Shkalikovs theory
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/254925.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite-dimensional control systems
semigroups
spectral methods
Riesz bases
Opis:
The modern method of analysis of the distributed parameter systems relies on the transformation of the dynamical model to an abstract differential equation on an appropriately chosen Banach or, if possible, Hilbert space. A linear dynamical model in the form of a first order abstract differential equation is considered to be well-posed if its right-hand side generates a strongly continuous semigroup. Similarly, a dynamical model in the form of a second order abstract differential equation is well-posed if its right-hand side generates a strongly continuous cosine family of operators. Unfortunately, the presence of a feedback leads to serious complications or even excludes a direct verification of assumptions of the Hille-Phillips-Yosida and/or the Sova-Fattorini Theorems. The class of operators which are similar to a normal discrete operator on a Hilbert space describes a wide variety of linear operators. In the papers [12, 13] two groups of similarity criteria for a given hybrid closed-loop system operator are given. The criteria of the first group are based on some perturbation results, and of the second, on the application of Shkalikov's theory of the Sturm-Liouville eigenproblems with a spectral parameter in the boundary conditions. In the present paper we continue those investigations showing certain advanced applications of the Shkalikov's theory. The results are illustrated by feedback control systems examples governed by wave and beam equations with increasing degree of complexity of the boundary conditions.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 45-97
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximate constrained controllability of mechanical system
Sterowanie minimalno-czasowe manipulatorów hydraulicznych po zadanej ścieżce
Autorzy:
Klamka, J.
Powiązania:
https://bibliotekanauki.pl/articles/279817.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
linear infinite-dimensional control systems
mechanical flexible structure vibratory systems
controllability of abstract dynamical systems
Opis:
In the present paper approximate constrained controllability of linear abstract second-order infinite-dimensional dynamical control systems is considered. First, fundamental definitions and notions are recalled. Next it is proved, using the so-called frequency-domain method, that approximate constrained controllability of second-order dynamical control system can be verified by the approximate constrained controllability conditions for the simplified, suitably defined first-order linear dynamical control system. General results are then applied for approximate constrained controllability investigation of mechanical flexible structure vibratory dynamical system. Some special cases are also considered. Moreover, many remarks, comments and corollaries on the relationships between different concepts of approximate controllability are given. Finally, the obtained results are applied for investigation of approximate constrained controllability for flexible mechanical structure. In this case linear second-order partial differential state equation describes the transverse motion of an elastic beam which occupies the given finite interval.
Praca przedstawia metodę optymalizacji minimalno-czasowej ruchów manipulatorów hydraulicznych, po zadanej ścieżce członu roboczego. Zakładane jest, że ścieżka członu roboczego jednoznacznie określa odpowiadającą jej ścieżkę manipulatora w zmiennych uogólnionych. Optymalizacja sprowadza się wówczas do znalezienia optymalnego rozkładu parametru ścieżki w czasie. Proponowana metoda optymalizacji polega na przybliżeniu ciągłego rozkładu parametru zbiorem punktów, a następnie znalezieniu ich optymalnych położeń metodami programowania nieliniowego z ograniczeniami. Zakładana jest przy tym nieściśliwość cieczy hydraulicznej, w celu przyspieszenia obliczeń. Załączone są wyniki przykładowych optymalizacji, wykonanych na modelu trójczłonowej koparki hydraulicznej.
Źródło:
Journal of Theoretical and Applied Mechanics; 2005, 43, 3; 539-554
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Different Models of Chemotherapy Taking Into Account Drug Resistance Stemming from Gene Amplification
Autorzy:
Śmieja, J.
Świerniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/908161.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
medycyna
automatyka
biomedical modelling
infinite dimensional systems
multivariable control
Opis:
This paper presents an analysis of some class of bilinear systems that can be applied to biomedical modelling. It combines models that have been studied separately so far, taking into account both the phenomenon of gene amplification and multidrug chemotherapy in their different aspects. The mathematical description is given by an infinite dimensional state equation with a system matrix whose form allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension, can have any form, the other is infinite dimensional and tridiagonal. A methodology of the analysis of such models, based on system decomposition, is presented. An optimal control problem is defined in the l1 space. In order to derive necessary conditions for optimal control, the model description is transformed into an integro-differential form. Finally, biomedical implications of the obtained results are discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 3; 297-305
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal multidrug treatment in the presence of drug resistance stemming from gene amplification
Autorzy:
Śmieja, J.
Świerniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/332869.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
nieskończenie wymiarowy system
optymalna kontrola
modelowanie biomedyczne
infinite dimensional systems
optimal control
biomedical modeling
Opis:
The paper is concerned with development of optimal treatment protocols that take into account both action of several drugs and the evolution of drug resistance. It is a result of analysis of evolution of drug resistance in cancer population but presented methodology can be applied in any case involving drug resistance stemming from gene amplification. First, a biological background is given. In subsequent sections of the paper, the developed technique is presented and some early analytical results, which form a basis for more precise modeling, are shown. Afterwards, the model description is transformed into a vector integro-differential equation, which makes it possible to define necessary conditions of optimal solution to the minimization problem arising from the search for the optimal treatment. Finally, some remarks on the model applicability are presented.
Źródło:
Journal of Medical Informatics & Technologies; 2002, 3; MI13-19
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Circle criterion and boundary control systems in factor form: input-output approach
Autorzy:
Grabowski, P.
Callier, F. M.
Powiązania:
https://bibliotekanauki.pl/articles/908133.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
układ sterowania
przepływy międzygałęziowe
infinite dimensional control systems
semigroups
input-output relations
Opis:
A circle criterion is obtained for a SISO Lur'e feedback control system consisting of a nonlinear static sector-type controller and a linear boundary control system in factor form on an infinite-dimensional Hilbert state space H previously introduced by the authors (Grabowski and Callier, 1999). It is assumed for the latter that (a) the observation functional is infinite-time admissible, (b) the factor control vector satisfies a compatibility condition, and (c) the transfer function belongs to Hinfty(Pi+) and satisfies a frequency-domain inequality of the circle criterion type. We also require that the closed-loop system be well-posed, i.e. for any initial state x0in H the truncated input and output signals uT, yT belong to L2(0,T) for any T>0. The technique of the proof adapts Desoer-Vidyasagar's circle criterion method (Desoer and Vidyasagar, 1975, Ch.3, Secs.1 and 2, pp.37-43, Ch.5, Sec.2, pp.139-142 and Ch.6, Secs.3 and 4, pp.172-174]), and uses the input-output map developed by the authors (Grabowski and Callier, 2001). The results are illustrated by two transmission line examples: (a) that of the loaded distortionless RLCG type, and (b) that of the unloaded RC type. The conclusion contains a discussion on improving the results by the loop-transformation technique.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 6; 1387-1403
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Motion Planning, Equivalence, Infinite Dimensional Systems
Autorzy:
Rouchon, P.
Powiązania:
https://bibliotekanauki.pl/articles/908322.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda elementów skończonych
układ sterowania
system opóźniania
infinite dimensional control systems
motion planning
flatness
absolute equivalence
Pfaffian systems
delay systems
Gevrey functions
Opis:
Motion planning, i.e., steering a system from one state to another, is a basic question in automatic control. For a certain class of systems described by ordinary differential equations and called flat systems (Fliess et al., 1995; 1999a), motion planning admits simple and explicit solutions. This stems from an explicit description of the trajectories by an arbitrary time function y, the flat output, and a finite number of its time derivatives. Such explicit descriptions are related to old problems on Monge equations and equivalence investigated by Hilbert and Cartan. The study of several examples (the car with n-trailers and the non-holonomic snake, pendulums in series and the heavy chain, the heat equation and the Euler-Bernoulli flexible beam) indicates that the notion of flatness and its underlying explicit description can be extended to infinite-dimensional systems. As in the finite-dimensional case, this property yields simple motion planning algorithms via operators of compact support. For the non-holonomic snake, such operators involve non-linear delays. For the heavy chain, they are defined via distributed delays. For heat and Euler-Bernoulli systems, their supports are reduced to a point and their definition domain coincides with the set of Gevrey functions of order 2.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 1; 165-188
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies