Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "industrial minerals" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Value added industrial minerals production from calcite-rich wollastonite
Wartość dodana produkcji surowców przemysłowych ze złóż kalcytu i wollastonitu
Autorzy:
Bulut, Gülay
Akçin, Elif Suna
Kangal, Murat Olgaç
Powiązania:
https://bibliotekanauki.pl/articles/216790.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wollastonite
calcite
flotation
industrial minerals
wollastonit
kalcyt
flotacja
surowce przemysłowe
Opis:
The worldwide consumption of wollastonite has been increasing from day to day. It is a calcium metasilicate with the chemical formula CaSiO3. Wollastonite is the only naturally occurring, nonmetallic, white mineral that is needle-shaped in a crystal habit. Due to its high chemical and thermal resistance and nontoxic properties, wollastonite replaces asbestos. Apart from this, the acicular property of wollastonite allow it to compete with other acicular materials where improvements in dimensional stability, flexural modulus and heat deflection are sought. Due to its unique properties such as: its high brightness and whiteness, low moisture and oil absorption, low volatile content, and acicular properties, it is used also as a filling material for ceramics, plastics and paints, thermal and electrical insulator, wetting agent and smelter for glaze. Three methods are used for the beneficiation of wollastonite: mechanical sorting, dry or wet magnetic separation and flotation. Magnetic separation and flotation can be applied together in some cases. In this study, flotation has been investigated for the selective separation of calcite-rich wollastonite ores from the Buzlukdağ deposit, in the Kırşehir-Akpınar region, in the middle of Anatolia. The mineralogical analysis of the sample used in the study shows that the ore sample contains 60–62% wollastonite (CaSiO3), 4–5% augite (Ca,Na)(Mg,Fe,Al)(Si,Al)2O6, 30–32% calcite (CaCO3) and minor amount of other minerals. As a result of this study, the wollastonite concentrate which contains 0.44% Fe2O3, 52.71% SiO2, 87.85% wollastonite with 0.60% loss on ignition (using 1500 g/t potassium oleate) was obtained. The ultimate grade concentrates of calcite that can also be obtained as by-products are with 99.80% calcite content and 85.4% recovery.
Światowe zużycie wollastonitu ciągle wzrasta. Wollastonit jest metakrzemianem wapnia o wzorze chemicznym CaSiO3. Jest jedynym naturalnie występującym, niemetalicznym, białym minerałem, który ma kształt igieł o pokroju kryształu. Wollastonit ze względu na wysoką odporność chemiczną i termiczną oraz właściwości nietoksyczne zastępuje azbest. Poza tym igiełkowa właściwość wollastonitu umożliwia konkurencję z innymi igiełkowymi materiałami, w zakresie poprawy stabilności wymiarowej, modułu zginania i ugięcia pod wpływem ciepła. Ze względu na swoje unikalne właściwości, takie jak: wysoka jasność i biel, niska wilgotność i absorpcja oleju, niska zawartość części lotnych i właściwości igiełkowe, umożliwia zastosowanie jego jako: materiału wypełniającego do ceramiki, tworzyw sztucznych i farb, izolatora termicznego i elektrycznego, środka zwilżającego i pieca do glazury. Do wzbogacania wollastonitu stosowane są trzy metody: sortowanie mechaniczne, separacja magnetyczna na sucho lub mokro oraz flotacja. W niektórych przypadkach można zastosować zarówno separację magnetyczną, jak i flotację. W tym artykule zastosowano flotację w celu selektywnego oddzielania rud kalcytu i wollastonitu ze złoża Buzlukdağ w regionie Kırşehir-Akpınar w centrum Anatolii. Analiza mineralogiczna próbki użytej w badaniu pokazuje, że próba rudy zawiera 60–62% wollastonitu (CaSiO3), 4–5% augitu (Ca, Na)(Mg, Fe, Al)(Si, Al)2O6, 30–32% kalcytu (CaCO3) i niewielką ilość innych minerałów. W wyniku tych badań uzyskano koncentrat wollastonitu, który zawiera 0,44% ‒ Fe2O3, 52,71% ‒ SiO2, 87,85% wolastonitu przy stratach wynoszących 0,60% (przy użyciu 1500 g/Mg oleinianu potasu). Końcowe koncentraty kalcytu, które można również otrzymać jako produkty uboczne, zawierają 99,80% kalcytu i 85,4% odzysku.
Źródło:
Gospodarka Surowcami Mineralnymi; 2019, 35, 1; 43-58
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monazite-bearing post processing wastes and their potential economic significance
Odpady monacytonośne i ich potencjalne znaczenie gospodarcze
Autorzy:
Zglinicki, Karol
Szamałek, Krzysztof
Konopka, Gustaw
Powiązania:
https://bibliotekanauki.pl/articles/216834.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
Bangka Island
mineral tailing
monazite
REE minerals
industrial minerals
processing of minerals
wyspa Bangka
odpady przeróbcze
monacyt
REE
Opis:
During the geological prospecting works conducted in 2013 on Bangka Island (Indonesia), high monazite content was identified in the wastes produced during processing of cassiterite deposits. Monazite, among 250 known minerals containing REE, is one of the most important minerals as primary source of REE. The monazite content in this waste is up to 90.60%. The phase composition of the investigated tailing proves that the sources of minerals accompanying the placer sediments tin mineralization are granitoids. The tailing is composed of numerous ore minerals, including monazite, xenotime, zircon, cassiterite, malayaite, struverite, aeschynite-(Y), ilmenite, rutile, pseudorutile and anatase. Monazite grains belong to the group of cerium monazite. Its grains are characterized by high content of Ce2O3 27.12–33.50 w t.%, La2O3 up to 15.46 w t.%, Nd2O3 up to 12.87%. The total REE2O3 + Y content ranges from 58.18 to 65.90 wt.%. Monazite grains observations (SEM-BSE) revealed the presence of porous zones filled with fine phases of minerals with U and Th content. The radiation intensity of 232Th is ATh = 340 ± 10 Bq and 238AU = 114 ± 2 Bq. High content of monazite and other REE minerals indicates that tailing is a very rich, potential source of REEs, although the presence of radioactive elements at the moment is a technological obstacle in their processing and use. The utilization of monazite bearing waste in the Indonesian Islands can be an important factor for development and economic activation of this region and an example of the good practice of circular economy rules.
W trakcie geologicznych prac prospekcyjnych prowadzonych w 2013 roku na indonezyjskiej wyspie Bangka stwierdzono wysokie zawartości monacytu w odpadach powstałych po przeróbce osadów kasyterytonośnych. Monacyt jest jednym z najważniejszych pierwotnych źródeł REE wśród 250 znanych minerałów zawierających REE. Zawartość monacytu w badanym odpadzie wynosi do 90,60%. Skład fazowy badanych odpadów wskazuje, że źródłem minerałów towarzyszących w cynonośnych złożach okruchowych były granitoidy. W składzie odpadu przeróbczego, metodą XRD zidentyfikowano obecność licznych minerałów złożowych, wśród nich: monacyt, ksenotym, cyrkon, kasyteryt, malayait, strüveryt, aeschynit-(Y), ilmenit, rutyl, pseudorutyl i anataz. Badania składu chemicznego ziaren monacytu z użyciem EPMA ujawniły, że należy on do grupy monacytu cerowego. Jego ziarna cechują się wysoką zawartością Ce2O3 27,12–33,50% wt., La2O3 do 15,46% wt., Nd2O3 do 12,87%. Całkowita zawartość REE2O3 + Y mieści się w zakresie od 58,18 do 65,90% wt. Obserwacje ziaren monacytu (BSE) ujawniły w nich obecność stref porowatych wypełnionych drobnymi fazami minerałów z udziałem U oraz Th. Aktywność promieniotwórcza 232Th wynosi ATh = 340 ± 10 Bq, a 238U = 114 ± 2 Bq. Wysoka zawartość monacytu oraz innych minerałów nośników REE wskazuje, że odpad przeróbczy stanowi bardzo bogate, potencjalne źródło pierwiastków ziem rzadkich, choć zawartość pierwiastków promieniotwórczych stanowi obecnie przeszkodę technologiczną w ich przetwarzaniu i wykorzystaniu. Wykorzystanie monacytonośnych odpadów z wysp Indonezji może być ważnym czynnikiem rozwoju i aktywizacji gospodarczej tego regionu oraz przykładem dobrej praktyki stosowania zasad gospodarki o obiegu zamkniętym.
Źródło:
Gospodarka Surowcami Mineralnymi; 2020, 36, 1; 37-58
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies