Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "independent domination" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Independent set dominanting sets in bipartite graphs
Autorzy:
Zelinka, B.
Powiązania:
https://bibliotekanauki.pl/articles/255203.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
set dominanting set
set domination number
independent set
bipartite graph
multihypergraph
Opis:
The paper continues the study of independent set dominating sets in graphs which was started by E. Sampathkumar. A subset D of the vertex set V(G) of a graph G is called a set dominating set (shortly sd-set) in G, if for each set X ikkeq V(G) - D there exists a set Y ikkeq D such that the subgraph of G induced X cup Y is connected. The minimum number of vertices of an sd-set in G is called the set domination number gammas (G) of G. An sd-set D in G such that /D/ = gammas(G) is called a gammas-set in G. In this paper we study sd-sets in bipartite graphs which are simultaneously independent. We apply the theory of hypergraphs.
Źródło:
Opuscula Mathematica; 2005, 25, 2; 345-349
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remarks on the outer-independent double Italian domination number
Autorzy:
Volkman, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/2051048.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
double Italian domination number
outer-independent double Italian domination number
Nordhaus-Gaddum bound
Opis:
Let $G$ be a graph with vertex set $V(G)$. If $u \in V(G)$, then $N[u]$ is the closed neighborhood of $u$. An outer-independent double Italian dominating function (OIDIDF) on a graph $G$ is a function $ƒ : V(G) \rightarrow \{0, 1, 2, 3\}$ such that if $ƒ (v) \in \{0, 1\}$ for a vertex $v \in V(G)$, then $\Sigma_{x \in N[v]} f(x) \geq 3$, and the set ${u \in V(G) : f (u) = 0}$ is independent. The weight of an OIDIDF $f$ is the sum $\Sigma_{v \in V(G)} f(v)$. The outer-independent double Italian domination number $\gamma_{oidI}(G)$ equals the minimum weight of an OIDIDF on G. In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, \textit{Bounds on the outer-independent double Italian domination number}, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.
Źródło:
Opuscula Mathematica; 2021, 41, 2; 259-268
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On equality in an upper bound for the acyclic domination number
Autorzy:
Samodivkin, V.
Powiązania:
https://bibliotekanauki.pl/articles/255046.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dominating set
acyclic set
independent set
acyclic domination number
Opis:
A subset A of vertices in a graph G is acyclic if the subgraph it induces contains no cycles. The acyclic domination number ϒa (G) of a graph G is the minimum cardinality of an acyclic dominating set of G. For any graph G with n vertices and maximum degree Δ(G), ϒa(G) ≤ n - Δ(G). In this paper we characterize the connected graphs and the connected triangle-free graphs which achieve this upper bound.
Źródło:
Opuscula Mathematica; 2008, 28, 3; 331-334
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Constructive Characterization of Vertex Cover Roman Trees
Autorzy:
Martínez, Abel Cabrera
Kuziak, Dorota
Yero, Ismael G.
Powiązania:
https://bibliotekanauki.pl/articles/32083833.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
outer-independent Roman domination
vertex cover
vertex independence
trees
Opis:
A Roman dominating function on a graph G = (V(G), E(G)) is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number γoiR(G) is the minimum weight w(f) = Σv∈V(G)f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by α(G). A graph G is a vertex cover Roman graph if γoiR(G) = 2α(G). A constructive characterization of the vertex cover Roman trees is given in this article.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 267-283
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Independent Transversal Total Domination versus Total Domination in Trees
Autorzy:
Martínez, Abel Cabrera
Peterin, Iztok
Yero, Ismael G.
Powiązania:
https://bibliotekanauki.pl/articles/32083825.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independent transversal total domination number
total domination number
independence number
trees
Opis:
A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by γt(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by γtt(G). Based on the fact that for any tree T, γt(T) ≤ γtt(T) ≤ γt(T) + 1, in this work we give several relationships between γtt(T) and γt(T) for trees T which are leading to classify the trees which are satisfying the equality in these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 213-224
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Outer independent rainbow dominating functions in graphs
Autorzy:
Mansouri, Zhila
Mojdeh, Doost Ali
Powiązania:
https://bibliotekanauki.pl/articles/1397885.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
outer-independent rainbow domination
K1
r -free graphs
trees
Opis:
A 2-rainbow dominating function (2-rD function) of a graph G = (V, E) is a function $ f : V(G) \rightarrow \{ \emptyset, \{1\}, \{2\}, \{1, 2\}\}$ having the property that if $f(x) = \emptyset$, then $f(N(x))= \{1,2\}$. The 2-rainbow domination number $\gamma_{r2}(G)$ is the minimum weight of $ \sum_{v \in V(G)} |f(v)| $ taken over all 2-rainbow dominating functions $f$. An outer-independent 2-rainbow dominating function (OI2-rD function) of a graph G is a 2-rD function $f$ for which the set of all $ v \in V(G)$ with $ f(v)=\emptyset $ is independent. The outer independent 2-rainbow domination number [formula] is the minimum weight of an OI2-rD function of G. In this paper, we study the OI2-rD number of graphs. We give the complexity of the problem OI2-rD of graphs and present lower and upper bounds on $\gamma_{oir2} (G) $. Moreover, we characterize graphs with some small or large OI2-rD numbers and we also bound this parameter from above for trees in terms of the order, leaves and the number of support vertices and characterize all trees attaining the bound. Finally, we show that any ordered pair (a, b) is realizable as the vertex cover number and OI2-rD numbers of some non-trivial tree if and only if $a+1 \leq b \leq 2a $.
Źródło:
Opuscula Mathematica; 2020, 40, 5; 599-615
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An upper bound on the total outer-independent domination number of a tree
Autorzy:
Krzywkowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/255991.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
total outer-independent domination
total domination
tree
Opis:
A total outer-independent dominating set of a graph G = (V (G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \ D is independent. The total outer-independent domination number of a graph G, denoted by [formula], is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n ≥ 4, with l leaves and s support vertices we have [formula], and we characterize the trees attaining this upper bound.
Źródło:
Opuscula Mathematica; 2012, 32, 1; 153-158
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Corrigendum to: Independent Transversal Domination in Graphs [Discuss. Math. Graph Theory 32 (2012) 5–17]
Autorzy:
Guzman-Garcia, Emma
Sánchez-López, Rocío
Powiązania:
https://bibliotekanauki.pl/articles/32316018.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
independent
transversal
covering
matching
Opis:
In [Independent transversal domination in graphs, Discuss. Math. Graph Theory 32 (2012) 5–17], Hamid claims that if G is a connected bipartite graph with bipartition {X, Y } such that |X| ≤ |Y| and |X| = γ(G), then γit(G) = γ(G) + 1 if and only if every vertex x in X is adjacent to at least two pendant vertices. In this corrigendum, we give a counterexample for the sufficient condition of this sentence and we provide a right characterization. On the other hand, we show an example that disproves a construction which is given in the same paper.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 601-611
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs
Autorzy:
Dettlaff, M.
Raczek, J.
Yero, I. G.
Powiązania:
https://bibliotekanauki.pl/articles/255785.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
domination
paired domination
independent domination
edge subdivision
edge multisubdivision
corona graph
Opis:
Given a graph G = (V, E), the subdivision of an edge e = uv ∈ E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision) numbers are denned similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision) numbers of the generalized corona graphs.
Źródło:
Opuscula Mathematica; 2016, 36, 5; 575-588
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination Number, Independent Domination Number and 2-Independence Number in Trees
Autorzy:
Dehgardi, Nasrin
Sheikholeslami, Seyed Mahmoud
Valinavaz, Mina
Aram, Hamideh
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/32083746.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-independence number
domination number
independent domination number
Opis:
For a graph $G$, let $\gamma(G)$ be the domination number, $i(G)$ be the independent domination number and $\beta_2(G)$ be the 2-independence number. In this paper, we prove that for any tree $T$ of order $n ≥ 2, 4\beta_2(T) − 3\gamma(T) ≥ 3i(T)$, and we characterize all trees attaining equality. Also we prove that for every tree $T$ of order \(n ≥ 2, i(T)≤\frac{3\beta_2(T)}{4}\), and we characterize all extreme trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 39-49
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The independent domination number of a random graph
Autorzy:
Clark, Lane
Johnson, Darin
Powiązania:
https://bibliotekanauki.pl/articles/743841.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
random graph
two-point concentration
independent domination
Opis:
We prove a two-point concentration for the independent domination number of the random graph $G_{n,p}$ provided p²ln(n) ≥ 64ln((lnn)/p).
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 129-142
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
Autorzy:
Chellali, Mustapha
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/30146596.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
independent Roman domination
strong equality
trees
Opis:
A Roman dominating function (RDF) on a graph $G = (V,E)$ is a function $ f : V \rightarrow {0, 1, 2} $ satisfying the condition that every vertex $ u $ for which $ f(u) = 0 $ is adjacent to at least one vertex $v$ for which $f(v) = 2$. The weight of an RDF is the value $ f(V (G)) = \Sigma_{u \in V (G) } f(u) $. An RDF $f$ in a graph $G$ is independent if no two vertices assigned positive values are adjacent. The Roman domination number $ \gamma_R (G) $ (respectively, the independent Roman domination number $ i_R(G) $) is the minimum weight of an RDF (respectively, independent RDF) on $G$. We say that $ \gamma_R(G)$ strongly equals $ i_R(G)$, denoted by $ \gamma_R (G) \equiv i_R(G)$, if every RDF on $G$ of minimum weight is independent. In this paper we provide a constructive characterization of trees $T$ with $ \gamma_R(T) \equiv i_R(T) $.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 337-346
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on the independent Roman domination in unicyclic graphs
Autorzy:
Chellali, M.
Rad, N. J.
Powiązania:
https://bibliotekanauki.pl/articles/255989.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Roman domination
independent Roman domination
strong equality
Opis:
A Roman dominating function (RDF) on a graph G= (V, E) is a function ƒ : V → {0, 1, 2} satisfying the condition that every vertex u for which ƒ(u) = 0 is adjacent to at least one vertex v for which ƒ(v)=2. The weight of an RDF is the value [formula]. An RDF ƒ in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number ΥR (G) (respectively, the independent Roman domination number ΥR(G) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that ΥR(G) strongly equals iR(G), denoted by ΥR(G) ≡ iR(G), if every RDF on G of minimum weight is independent. In this note we characterize all unicyclic graphs G with ΥR(G) ≡ iR(G).
Źródło:
Opuscula Mathematica; 2012, 32, 4; 715-718
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on domination parameters in random graphs
Autorzy:
Bonato, Anthony
Wang, Changping
Powiązania:
https://bibliotekanauki.pl/articles/743019.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
random graphs
independent domination
total domination
Opis:
Domination parameters in random graphs G(n,p), where p is a fixed real number in (0,1), are investigated. We show that with probability tending to 1 as n → ∞, the total and independent domination numbers concentrate on the domination number of G(n,p).
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 2; 335-343
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Independent Domination in Planar Cubic Graphs
Autorzy:
Abrishami, Gholamreza
Henning, Michael A.
Rahbarnia, Freydoon
Powiązania:
https://bibliotekanauki.pl/articles/31343229.pdf
Data publikacji:
2019-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independent domination number
domination number
cubic graphs
Opis:
A set $S$ of vertices in a graph $G$ is an independent dominating set of $G$ if $S$ is an independent set and every vertex not in $S$ is adjacent to a vertex in $S$. The independent domination number, $i(G)$, of $G$ is the minimum cardinality of an independent dominating set. Goddard and Henning [Discrete Math. 313 (2013) 839–854] posed the conjecture that if \( G \not\in \{ K_{3,3}, C_5 \square K_2 \} \) is a connected, cubic graph on $n$ vertices, then $i(G) \le 3/8 n $, where $ C_5 \square K_2 $ is the 5-prism. As an application of known result, we observe that this conjecture is true when $G$ is 2-connected and planar, and we provide an infinite family of such graphs that achieve the bound. We conjecture that if $G$ is a bipartite, planar, cubic graph of order $n$, then $ i(G) \le 1/3 n $, and we provide an infinite family of such graphs that achieve this bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 841-853
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies