Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "immiscible fluids" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between
Autorzy:
Linga Raju, T.
Nagavalli, M.
Powiązania:
https://bibliotekanauki.pl/articles/955179.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
magnetohydrodynamika
przepływ niestacjonarny
transfer ciepła
magnetohydrodynamics
immiscible fluids
rotating fluid
unsteady flow
heat transfer
Opis:
An unsteady magnetohydrodynamic (MHD) two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities.
Źródło:
International Journal of Applied Mechanics and Engineering; 2014, 19, 1; 97-121
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unsteady two-layered fluid flow of conducting fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system
Autorzy:
Linga Raju, T.
Neela Rao, B.
Powiązania:
https://bibliotekanauki.pl/articles/264889.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
magnetohydrodynamika
przepływ oscylacyjny
porowatość
magnetohydrodynamics
two-layered fluids/immiscible fluids
rotating fluids
oscillating flow
unsteady flow
porous plates
Opis:
An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.
Źródło:
International Journal of Applied Mechanics and Engineering; 2016, 21, 2; 423-446
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of electric field on dispersion of a solute in an MHD flow through a vertical channel with and without chemical reaction
Autorzy:
Umavathi, J. C.
Kumar, J. P.
Gorla, R. S. R.
Gireesha, B. J.
Powiązania:
https://bibliotekanauki.pl/articles/265686.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
dyspersja Taylora
magnetohydrodynamika
reakcja chemiczna
Taylor dispersion
immiscible fluids
conducting fluid
MHD
chemical reaction
Opis:
The longitudinal dispersion of a solute between two parallel plates filled with two immiscible electrically conducting fluids is analyzed using Taylor’s model. The fluids in both the regions are incompressible and the transport properties are assumed to be constant. The channel walls are assumed to be electrically insulating. Separate solutions are matched at the interface using suitable matching conditions. The flow is accompanied by an irreversible first-order chemical reaction. The effects of the viscosity ratio, pressure gradient and Hartman number on the effective Taylor dispersion coefficient and volumetric flow rate for an open and short circuit are drawn in the absence and in the presence of chemical reactions. As the Hartman number increases the effective Taylor diffusion coefficient decreases for both open and short circuits. When the magnetic field remains constant, the numerical results show that for homogeneous and heterogeneous reactions, the effective Taylor diffusion coefficient decreases with an increase in the reaction rate constant for both open and short circuits.
Źródło:
International Journal of Applied Mechanics and Engineering; 2016, 21, 3; 683-711
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MHD heat transfer in two-layered flow of conducting fluids through a channel bounded by two parallel porous plates in a rotating system
Autorzy:
Linga Raju, T.
Neela Rao, B.
Powiązania:
https://bibliotekanauki.pl/articles/264768.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
magnetohydrodynamika
przenikanie ciepła
porowatość
MHD
two-layered fluids/immiscible fluids
unsteady flow
heat transfer
rigid rotation
porous boundaries
Opis:
The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.
Źródło:
International Journal of Applied Mechanics and Engineering; 2016, 21, 3; 623-648
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unsteady two-layered fluid flow and heat transfer of conducting fluids in a channel between parallel porous plates under transverse magnetic field
Autorzy:
Linga Raju, T.
Nagavalli, M.
Powiązania:
https://bibliotekanauki.pl/articles/264466.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
magnetohydrodynamika
mieszanie płynów
przepływ niestacjonarny
ruch oscylacyjny
przenikanie ciepła
magnetohydrodynamics
two-layered fluid flow/immiscible fluids
unsteady flow
oscillatory motion
heat transfer
porous plate
Opis:
The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical and thermal conductivities.
Źródło:
International Journal of Applied Mechanics and Engineering; 2013, 18, 3; 699-726
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies