Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image matching" wg kryterium: Temat


Tytuł:
A binary representation for real-valued, local feature descriptors
Autorzy:
Oszust, M.
Powiązania:
https://bibliotekanauki.pl/articles/384335.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
SIFT
SURF
LDAHash
binary tests
image matching
image recognition
Opis:
The usage of real-valued, local descriptors in computer vision applications is ofen constrained by their large memory requirements and long matching time. Typical approaches to the reduction of their vectors map the descriptor space to the Hamming space in which the obtained binary strings can be efficiently stored and compared. In contrary to such techniques, the approach proposed in this paper does not require a data-driven binarisation process, but can be seen as an extension of the floating-point descriptor computation pipeline with a step that allows turning it into a binary descriptor. In this step, binary tests are performed on values determined for pixel blocks from the described image patch. In the paper, the proposed approach is described and applied to two popular real-valued descriptors, SIFT and SURF. The paper also contains a comparison of the approach with state-of-the-art binarisation techniques and popular binary descriptors. The results demonstrate that the proposed representation for real-valued descriptors outperforms other methods on four demanding benchmark image datasets.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 1; 3-9
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza dokładności kształtu modelu elementu przemysłowego pozyskanego ze zdjęć cyfrowych i skaningu naziemnego
Analysis of accuracy of shape of industrial element model obtained from digital images and terrestrial laser scanning
Autorzy:
Zawieska, D.
Klimkowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/131102.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
model przestrzenny 3D
automatyczne dopasowanie obrazów
precyzyjny skaner przemysłowy
model projektowy
spatial model
automatic image matching
precise industrial scanner
project model
Opis:
Celem niniejszego referatu jest porównanie dokładności odtworzenia kształtu elementu łopaty wirnika nośnego śmigłowca pozyskanego ze zdjęć cyfrowych i skaningu naziemnego. Zdjęcia wykonano aparatem cyfrowym CANON EOS20D. Automatyczne dopasowanie zdjęć (matching), wykonano przy wykorzystaniu programu PhotoModeler Scanner. Do pomiaru badanej powierzchni metodą skaningu naziemnego, wykorzystano precyzyjny skaner optyczny ATOS II firmy GOM, który jest stosowany w pomiarach przemysłowych. Porównanie wygenerowanych modeli 3D, z modelem projektowym obiektu, wykonano w programie NX Siemens, będącym zaawansowanym programem typu CAD/CAM/CAE. Dopasowanie modeli wykonano na całym obiekcie, na wybranych profilach badanej łopaty wirnika. Ocenę dokładności otrzymano na podstawie pomiaru odchyłek na 148 punktach, dla których policzona została wartość średnia. Wymagana dokładność, określona przez specjalistów, odtworzenia kształtu tego rodzaju elementu konstrukcyjnego śmigłowca wynosi 0.1 mm. W prezentowanym eksperymencie otrzymano dla modelu fotogrametrycznego 0.42 mm, dla modelu ze skaningu laserowego 0.22 mm.
The purpose of this paper is to compare the accuracy of shape of an element of the main rotor of a helicopter reconstructed from digital photographs and terrestrial scanner. The purpose of the main rotor is to generate the thrust necessary for the flight (forward, backward, sideward), as well as the moments for stability and control. The construction of such types of objects requires very high precision, since the admissible error of the reproduced part amounts to 0.1 mm. To carry out an analysis of the accuracy, 3D models obtained from different data were generated. A first reference model was created from the design data.. Design data allow to draw profiles of the main rotor and then describe its surface, and it is possible to measure coordinates of any point of the object. A second model was obtained from digital images taken by the Canon EOS 20D camera and with use of two types of coded and uncoded reference points placed on the object. Automatic image matching was executed in the PhotoModeler Scanner software. The third model was reconstructed on the basis of data from terrestrial laser scanning, where the industrial precise ATOS II scanner from the GOM company was used. In addition, special target points for automatic scan matching on this object were located. A comparison of these two generated 3D models with the reference model was carried out in the NX program, which is an advanced CAD/CAM/CAE software. Based on the analysis, both evaluation of the accuracy of the generated models and the time consumption and economic aspects were compared.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2010, 21; 493-502
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of operators for detection of corners set in automatic image matching
Autorzy:
Zawieska, D.
Powiązania:
https://bibliotekanauki.pl/articles/129929.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
feature detection
corner detection
3D modelling
image matching
funkcja wykrywania
wykrywanie krawędzi
modelowanie 3D
dopasowanie obrazów
Opis:
Reconstruction of three dimensional models of objects from images has been a long lasting research topic in photogrammetry and computer vision. The demand for 3D models is continuously increasing in such fields as cultural heritage, computer graphics, robotics and many others. The number and types of features of a 3D model are highly dependent on the use of the models, and can be very variable in terms of accuracy and time for their creation. In last years, both computer vision and photogrammetric communities have approached the reconstruction problems by using different methods to solve the same tasks, such as camera calibration, orientation, object reconstruction and modelling. The terminology which is used for addressing the particular task in both disciplines is sometimes diverse. On the other hand, the integration of methods and algorithms coming from them can be used to improve both. The image based modelling of an object has been defined as a complete process that starts with image acquisition and ends with an interactive 3D virtual model. The photogrammetric approach to create 3D models involves the followings steps: image pre-processing, camera calibration, orientation of images network, image scanning for point detection, surface measurement and point triangulation, blunder detection and statistical filtering, mesh generation and texturing, visualization and analysis. Currently there is no single software package available that allows for each of those steps to be executed within the same environment. For high accuracy of 3D objects reconstruction operators are required as a preliminary step in the surface measurement process, to find the features that serve as suitable points when matching across multiple images. Operators are the algorithms which detect the features of interest in an image, such as corners, edges or regions. This paper reports on the first phase of research on the generation of high accuracy 3D model measurement and modelling, focusing upon the application of different operators for accurate feature point extraction. The implementation of those operators is discussed and performance of differen operators is analysed. The optimal operator for high accuracy close range object reconstruction is then highlighted. This research has facilitated a development of the feature extraction and image measurement process that will be central to the development of an automatic procedure for high accuracy point cloud generation in multi image networks where robust orientation and 3D point determination will facilitate surface measurement and modelling within a single software system.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2011, 22; 423-436
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of cascading two-dimensional canonical correlation analysis to image matching
Autorzy:
Forczmański, P.
Kukharev, G.
Kamenskaya, E.
Powiązania:
https://bibliotekanauki.pl/articles/206165.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
canonical correlation analysis
image matching
face recognition
Opis:
The paper presents a novel approach to Canonical Correlation Analysis (CCA) applied to visible and thermal infrared spectrum facial images. In the typical CCA framework biometrical information is transformed from original feature space into the space of canonical variates, and further processing takes place in this space. Extracted features are maximally correlated in canonical variates space, making it possible to expose, investigate and model latent relationships between measured variables. In the paper the CCA is implemented along two directions (along rows and columns of pixel matrix of dimension M x N) using a cascade scheme. The first stage of transformation proceeds along rows of data matrices. Its results are reorganized by transposition. These reorganized matrices are inputs to the second processing stage, namely basic CCA procedure performed along the rows of reorganized matrices, resulting in fact in proceeding along the columns of input data matrix. The so called cascading 2DCCA method also solves the Small Sample Size problem, because instead of the images of size MxN pixels in fact we are using N images of size M x 1 pixels and M images of size 1 x N pixels. In the paper several numerical experiments performed on FERET and Equinox databases are presented.
Źródło:
Control and Cybernetics; 2011, 40, 3; 833-848
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczna orientacja obrazów cyfrowych na przykładzie wybranej geometrii sieci zdjęć
Automatic orientation of digital images using the example of selected geometry of a network of images
Autorzy:
Zawieska, D.
Powiązania:
https://bibliotekanauki.pl/articles/131129.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
operatory detekcji narożników
dopasowanie zdjęć
modelowanie 3D
operators of corner detection
image matching
3D modelling
Opis:
Celem niniejszego referatu jest przeanalizowanie działania wybranych algorytmów, które automatycznie obliczą elementy orientacji zewnętrznej sieci zdjęć a następnie wyznaczą współrzędne chmury punktów 3D, opisujących model badanego obiektu. Do obliczeń wykorzystano autorski program, realizujący kolejne etapy tworzenia modelu 3D. Pierwsza faza obejmowała wyróżnienie na poszczególnych zdjęciach elementów charakterystycznych, gdzie wykorzystane zostały operatory detekcji narożników SIFT i SUSAN. Następnym krokiem było połączenie punktów homologicznych na sąsiednich zdjęciach. Sposób realizacji tego kroku jest determinowany przez wybór typu operatora. Operator SIFT posiada dedykowany mechanizm tworzenia par, podczas gdy operator SUSAN wymaga utworzenia odrębnych metod. Do dopasowania punktów wykorzystano metodę Area Base Matching, zmodyfikowaną na potrzeby modelowania 3D. Na podstawie tak zebranych danych, kolejnym etapem jest wyznaczenie współrzędnych 3D chmury punktów mierzonego obiektu. W niniejszym referacie przedstawiono dwa rozwiązania. Jedno z nich realizuje dopasowywanie zdjęć parami, korzystając z macierzy podstawowej a drugie trójkami, wykorzystując rachunek tensorowy. W praktyce, pierwsze rozwiązanie wyznaczające punkty modelu okazało się mniej stabilne numerycznie, co może prowadzić do znacznych błędów w modelu końcowym. Drugie rozwiązanie jest trudniejsze do wykorzystania, gdyż wymaga odnalezienia odpowiadających sobie punktów na co najmniej trzech zdjęciach. Eksperymenty przeprowadzono na wybranych obiektach bliskiego zasięgu, z odpowiednio wykonaną geometrią zdjęć, tworzących pierścień (okrąg) wokół mierzonego obiektu.
The objective of this paper is to analyse operations of selected algorithms, which will automatically compute elements of external orientation of a network of photographs and then, they will determine co-ordinates of a 3D cloud of points, which describe a model of the analysed object. The author’s software tool has been utilised for calculations; it performs successive stages of the 3D model generation: detection of characteristic points, point matching on successive photographs, determination of a tensor, calibration and 3D point cloud generation. A series of experiments have been performed in order to evaluate selection of the optimum solution. The first stage included distinguishing of characteristic elements on particular photographs; corner detection operators, SIFT and SUSAN were applied for that stage. The next step concerned connection of homological points on neighbouring photographs. The method of implementation of that step is determined by selection of the operator type. The SIFT operator has the dedicated mechanism of pair creation, whilst the SUSAN operator requires creation of separate methods. The Area Base Matching method, modified according to the demands of 3D modelling, was used for the needs of point matching. This method investigates correlation of the background within the neighbourhood of characteristic points and uses the results of that investigations to match the photographs. Basing on data collected this way, the next stage aims at determination of 3D co-ordinates of the cloud of points of the measured object. Two solutions have been presented in this paper. One of them allows for matching photographs in pairs, using the fundamental matrix; the second solution allows for threesome matching of photographs, using the tensor calculus. In practice, the first solution, which determines the model points, turned to be less numerically stable, what may lead to considerable errors of the final model. The second solution is more difficult to use, since it requires that corresponding points are found in at least three photographs. Experiments were performed for selected close range objects, with the appropriate specified geometry of photographs, which created a ring around the measured object.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 509-519
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczna rekonstrukcja modeli 3D małych obiektów bliskiego zasięgu
3D models automatic reconstruction of selected close range objects
Autorzy:
Zawieska, D.
Powiązania:
https://bibliotekanauki.pl/articles/130356.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
SUSAN
automatyczne dopasowanie obrazów
RANSAC
rekonstrukcja powierzchni
modelowanie 3D
wizualizacja
automatic image matching
surface reconstruction
3D modelling
visualization
Opis:
Reconstruction of three-dimensional, realistic models of objects from digital images has been the topic of research in many areas of science for many years. This development is stimulated by new technologies and tools, which appeared recently, such as digital photography, laser scanners, increase in the equipment efficiency and Internet. The objective of this paper is to present results of automatic modeling of selected close range objects, with the use of digital photographs acquired by the Hasselblad H4D50 camera. The author's software tool was utilized for calculations; it performs successive stages of the 3D model creation. The modeling process was presented as the complete process which starts from acquisition of images and which is completed by creation of a photorealistic 3D model in the same software environment. Experiments were performed for selected close range objects, with appropriately arranged image geometry, creating a ring around the measured object. The Area Base Matching (CC/LSM) method, the RANSAC algorithm, with the use of tensor calculus, were utilized form automatic matching of points detected with the SUSAN algorithm. Reconstruction of the surface of model generation is one of the important stages of 3D modeling. Reconstruction of precise surfaces, performed on the basis of a non-organized cloud of points, acquired from automatic processing of digital images, is a difficult task, which has not been finally solved. Creation of poly-angular models, which may meet high requirements concerning modeling and visualization is required in many applications. The polynomial method is usually the best way to precise representation of measurement results, and, at the same time, to achieving the optimum description of the surface. Three algorithm were tested: the volumetric method (VCG), the Poisson method and the Ball pivoting method. Those methods are mostly applied to modeling of uniform grids of points. Results of experiments proved that incorrect utilization of these methods results in various artifacts and deformations of models. After generation of a triangular grid of the modeled surface, results were visualized using the shading methods and texturing of the cloud of points. The accuracy of obtained reconstructions of the model surface equaled bellow 1 mm.
Celem niniejszego artykułu jest prezentacja wyników automatycznego modelowania wybranych obiektów bliskiego zasięgu (głowa manekina, kamień) z wykorzystaniem obrazów cyfrowych z aparatu Hasselblad H4D50. Do obliczeń wykorzystano autorski program, realizujący kolejne etapy tworzenia modelu 3D. Proces modelowania został zaprezentowany jako kompletny proces rozpoczynający się od pozyskania obrazów, który jest ukończony wraz z utworzeniem fotorealistycznego modelu 3D, w tym samym środowisku programowym. Eksperymenty przeprowadzono na wybranych obiektach bliskiego zasięgu, z odpowiednio wykonaną geometrią zdjęć, tworzących pierścień (okrąg) wokół mierzonego obiektu. Do automatycznego dopasowania punktów, wykrytych algorytmem SUSAN, wykorzystano metodę Area Base Matching (CC/LSM), algorytm RANSAC wykorzystując rachunek tensorowy. Rekonstrukcja powierzchni generowania modelu jest jednym z bardzo ważnych etapów modelowania 3D. Rekonstrukcja precyzyjnych powierzchni na podstawie nieregularnej chmury punktów uzyskanych z automatycznego opracowania obrazów cyfrowych jest zagadnieniem otwartym. Tworzenie wielokątnych modeli, które mogą sprostać wysokim wymaganiom w zakresie modelowania i wizualizacji, potrzebne jest w wielu aplikacjach. Metoda wielokątów jest zwykle idealna drogą do dokładnego reprezentowania wyników pomiarów, a jednocześnie do uzyskania optymalnego opisu powierzchni. Przetestowano trzy algorytmy: metodę objętościową (VCG), metodę Poissona i metodę Ball Pivoting. Metody te są najczęściej stosowane do modelowania jednorodnej siatki punktów. Wyniki eksperymentów wykazały, że niewłaściwe zastosowanie tych metod powoduje różne artefakty i zniekształcenia powierzchni modelu. Po utworzeniu siatki trójkątów modelowanej powierzchni, wyniki zwizualizowano wykorzystując metodę cieniowania oraz teksturowanie chmury punktów. Dokładność uzyskanej rekonstrukcji powierzchni modelu uzyskano z poniżej 1 mm.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 295-302
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyzacja procesu przetwarzania danych obrazowych
Automation of image data processing
Autorzy:
Preuss, R.
Powiązania:
https://bibliotekanauki.pl/articles/129781.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
DTM
DSM
image data
image-based systems
image matching
image-based georeference products
true ortho
dane obrazowe
systemy obrazowania
cyfrowe dopasowanie obrazów
obrazowe produkty georeferencyjne
Photoscan firmy Agisoft
Opis:
Niniejszy artykuł omawia aktualne możliwości automatyzacji procesu przetwarzania danych obrazowych na przykładzie wykorzystania programu PhotoScan firmy Agisoft. Obecnie dla tworzenia produktów fotogrametrycznych wykorzystuje się dane obrazowe pozyskiwane różnymi systemami rejestracji (kamery pomiarowe, niemetryczne) umieszczonymi na samolotach, satelitach czy coraz częściej na systemach UAV. Wykonuje się wielokrotne rejestracje obiektu (obszaru terenu) w celu wyeliminowania zjawiska martwych pół oraz dla podniesienia finalnej dokładności opracowania fotogrametrycznego - w efekcie tworzone są duże zespoły zdjęć. Geometria tak powstałych zespołów (bloków) zdjęć znacznie odbiega od standardowej konfiguracji zdjęć. Dla szybkiego odtworzenia orientacji zewnętrzne zdjęć w takim bloku wykorzystuje się obecnie automatyczne algorytmy dopasowania obrazów. Mogą one tworzyć model bloku w układzie lokalnym lub zewnętrznym układzie odniesienia wykorzystując dodatkowe dane w postaci pomierzonych środków rzutów oraz punktów osnowy terenowej (fotopunkty). W przypadku opracowania zdjęć niemetrycznych na tym etapie możliwym jest przeprowadzenie procesu samokalibracji. Algorytm dopasowania obrazów jest również wykorzystany w kolejnym kroku do generowania gęstej chmury punktów rekonstruującej kształt przestrzenny obiektu (obszaru). W kolejnych krokach przetwarzania mogą powstać standardowe produkty fotogrametryczne w postaci ortomozaiki, NMT lub NMPT oraz fotorealistycznego modelu bryły obiektu (terenu). szystkie wymienione kroki przetwarzania są realizowane w jednym programie, a nie jak to jest w standardowych oprogramowaniach komercyjnych w wielu modułach programowych. Dla określonego zestawu rejestracyjnego cały proces przetwarzania zdjęć na georeferencyjne produkty finalne może odbywać się w pełni automatycznie (wsadowo) poprzez sekwencyjne realizację ustalonych kroków przetwarzania przy wcześniej ustalonych parametrach sterujących. W artykule prezentowane będą praktyczne rezultaty zastosowania analizowanego programu dla całkowicie automatycznego generowania ortomozaiki zarówno z bloku standardowych zdjęć metrycznych wykonanych kamerą Vexcel jak również bloku zdjęć niemetrycznych pozyskanych systemem UAV.
This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft. At present, image data obtained by various registration systems (metric and non-metric cameras) placed on airplanes, satellites, or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured) are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation the geometry of the resulting image blocks is far from the typical configuration of images. For fast images georeferencing automatic image matching algorithms are currently applied. They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non-metric image application, it is also possible to carry out self-calibration process at this stage. Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object (area). In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic, DSM or DTM and a photorealistic solid model of an object. All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules. Image processing leading to final georeferenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters. The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non-metric UAV system.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2014, 26; 119-127
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diversity of photogrammetric approaches for multi-purpose applications
Autorzy:
Bujakiewicz, A.
Markiewicz, J.
Bakuła, K.
Zawierska, D
Powiązania:
https://bibliotekanauki.pl/articles/106787.pdf
Data publikacji:
2014
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
photogrammetry
computer vision
image orientation
data integration
image matching
fotogrametria
wizja komputera
orientacja obrazu
integracja danych
dopasowanie obrazu
Opis:
The presented paper shows the diversity of photogrommetric approaches by introducing a problem of camera interior orientation, data georeferencing. data integration and the issue of automatic object surface modelling. The authors discuss the abovementioned issues on the example of the work carried out at the Faculty of Geodesy and Cartography, Warsaw University of Technology referring to solutions practiced in Computer Vision. This article is an example of introduction of photogrammetry as a discipline open to achievements of close fields of science, which is widely applied in practice.
Źródło:
Reports on Geodesy and Geoinformatics; 2014, 96; 9-19
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dopasowywanie obrazów sonarowych w oparciu o metodę informacji wzajemnej
matching sonar images based on the mutual information method
Autorzy:
Chorzewska, K.
Felski, A.
Powiązania:
https://bibliotekanauki.pl/articles/222148.pdf
Data publikacji:
2012
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
sonogram
cyfrowa analiza obrazu
wyszukiwanie na podstawie zawartości
dopasowywanie obrazów
digital image analysis
content-based image retrieval (CBIR)
image matching
Opis:
Wśród wielu zagrożeń dla współczesnej żeglugi morskiej wymienia się między innymi zagrożenie terroryzmem. Na wodach płytkich może ono przyjmować postać zagrożenia improwizowanymi ładunkami wybuchowymi umieszczanymi na dnie z pokładów dowolnych jednostek, pojawiających się na akwenie w sposób niezauważalny dla kogokolwiek. Jednym z kierunków działań zmierzających do poprawy bezpieczeństwa w tym zakresie jest koncepcja hydroakustycznego systemu ochrony portów, torów wodnych i kotwicowisk. Zakłada ona możliwość szybkiego porównywania obrazów sonarowych z obrazami archiwalnymi, dając podstawy do wykrywania zmian na ochranianym akwenie, przy czym powszechna dostępność technik cyfrowych sugeruje wykonywanie takich poszukiwań w tej właśnie technologii. Porównywanie sonogramów metodami cyfrowej analizy obrazów wymaga w pierwszej kolejności przeprowadzenia ich prawidłowego automatycznego dopasowania. Automatyzacja procesu dopasowania obrazów otwiera dodatkowo perspektywy ich zastosowania w systemach nawigacji porównawczej. W artykule przedstawiono ujęcie tego zagadnienia w sposób właściwy dla technik wyszukiwania obrazów na podstawie zawartości (Content-Based Image Retrieval — CBIR). Wyznaczenie najlepszego dopasowania dwóch sonogramów przeprowadzono w oparciu o metodę maksymalizacji informacji wzajemnej.
Among many threats to the present maritime navigation the terrorism has risen to the rank of one of the most serious. In shallow waters there is a possibility of using the improvised explosive devices which can be placed on the seabed impromptu and imperceptible for anybody from deck of any watercraft or from a harbor quay. One of the proposals to improve the safety in this area is the idea of hydro acoustic surveillance system of ports, fairways and anchorages. It is based on the assumption that sonar images can be quickly compared with archived images leading to detecting changes in the waters protected. Widespread access to digital technologies suggests using them to deal with the problem mentioned. However, to compare sonograms with the digital picture analysis methods requires, first of all, their proper automatic adjustment. The automation of the image-matching process also opens perspectives for using it in systems based on the comparative navigation. The paper presents the approach to the issue based on Content-Based Image Retrieval (CBIR).The Mutual Information method is employed to best match two sonograms.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2012, R. 53 nr 4 (191), 4 (191); 19-32
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of sequential images for photogrammetrically point determination
Autorzy:
Kowalczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/131216.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
close range photogrammetry
image matching
sequential images
fotogrametria bliskiego zasięgu
spasowanie obrazów
kolejne obrazy
Opis:
Close range photogrammetry encounters many problems with reconstruction of objects three-dimensional shape. Relative orientation parameters of taken photos makes usually key role leading to right solution of this problem. Automation of technology process is hardly performed due to recorded scene complexity and configuration of camera positions. This configuration makes the process of joining photos into one set usually impossible automatically. Application of camcorder is the solution widely proposed in literature for support in 3D models creation. Main advantages of this tool are connected with large number of recorded images and camera positions. Exterior orientation changes barely between two neighboring frames. Those features of film sequence gives possibilities for creating models with basic algorithms, working faster and more robust, than with remotely taken photos. The first part of this paper presents results of experiments determining interior orientation parameters of some sets of frames, presenting three-dimensional test field. This section describes calibration repeatability of film frames taken from camcorder. It is important due to stability of interior camera geometric parameters. Parametric model of systematical errors was applied for correcting images. Afterwards a short film of the same test field had been taken for determination of check points group. This part has been done for controlling purposes of camera application in measurement tasks. Finally there are presented some results of experiments which compare determination of recorded object points in 3D space. In common digital photogrammetry, where separate photos are used, first levels of image pyramids are taken to connect with feature based matching. This complicated process creates a lot of emergencies, which can produce false detections of image similarities. In case of digital film camera, authors of publications avoid this dangerous step, going straightly to area based matching, aiming high degree of similarity for two corresponding film frames. First approximation, in establishing connections between photos, comes from whole image distance. This image distance method can work with more than just two dimensions of translation vector. Scale and angles are also used for improving image matching. This operation creates more similar looking frames where corresponding characteristic points lays close to each other. Procedure searching for pairs of points works faster and more accurately, because analyzed areas can be reduced. Another proposed solution comes from image created by adding differences between particular frames, gives more rough results, but works much faster than standard matching.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2011, 22; 285-296
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generowanie syntetycznych obrazów cyfrowych z punktami sygnalizowanymi
Synthetic digital images with artificial targets generating
Autorzy:
Sawicki, P.
Ostrowski, B.
Powiązania:
https://bibliotekanauki.pl/articles/130945.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
obraz cyfrowy
sztuczny znak
szum
rozmycie
błędy systematyczne obrazu
dystorsja
dopasowanie obrazu
digital image
artifical targets
noise
blurs
image systematic errors
distortion
matching
Opis:
W celu tworzenia syntetycznych obrazów cyfrowych bliskiego zasięgu, do badania dokładności i niezawodności zaawansowanych operatorów dopasowania (matching), opracowany został autorski program o nazwie Image Generator. Program Image Generator może generować okrągłe, ciemne sygnały (target) na jasnym tle lub jasne sygnały na ciemnym tle. Wygenerowanie testowych obrazów cyfrowych w formacie BMP, ze sztucznymi punktami sygnalizowanymi, wymaga w programie zdefiniowania następujących parametrów: rozdzielczość obrazu, wielkość piksela, promień znaku (target), odległość między znakami, jasność znaku i jego tła, szum tła, rozmycie krawędzi znaku, poziom ostrości, parametry kalibracji kamery cyfrowej oraz wielkość obszaru zainteresowań (interest area). Parametry radiometryczne obrazu definiuje się za pomocą składowych R, G, B, i dodatkowo przez wprowadzenie szumu gaussowskiego, o dowolnej wielkości i sile zakłócenia, oraz dwóch rodzajów filtrów uśredniających (boxfilter). Zmianę jasności znaków otrzymuje się przez wprowadzenie gradientu. Zniekształcenia geometryczne obrazu modelowane są błędami systematycznymi wg modelu Brown’a i El-Hakim’a oraz Beyer’a, które zawierają dystorsję radialną symetryczną, dystorsję radialną asymetryczną i tangencjalną, afinizm oraz nieortogonalność osi (shear) matrycy sensora. Zdjęcia dowolnie zorientowane tworzone są za pomocą transformacji rzutowej 2D. Aplikacja umożliwia dodatkowo tworzenie obszarów poszukiwań dla programu Matching, generowanie fragmentu obrazu z sygnałem, tworzenie protokołów zawierających współrzędne pikselowe z poziomami jasności. Program Image Generator został napisany w języku programowania Delphi 7. Testowanie wygenerowanych w programie Image Generator obrazów cyfrowych z sygnalizowanymi punktami różnej wielkości przeprowadzono wykonując automatyczny pomiar współrzędnych w autorskim programie Matching (zastosowano metodę ważonego środka ciężkości CWM – Center Weighted Metod i metodę dopasowania najmniejszych kwadratów LSM – Least Squares Matching) oraz komercyjnym programie Pictran DE (metoda LSM). Pomierzone współrzędne pikselowe środka znaków porównano z teoretycznymi współrzędnymi, które obliczono metodą Newtona. Średnia odchyłka kwadratowa RMS różnic współrzędnych pikselowych dla obrazów zniekształconych dystorsjami geometrycznymi i radiometrycznymi wyniosła RMSΔx'y' ≤ 0.3 piksela.
In order to generate synthetic digital close range images for testing the accuracy and reliability of the advanced matching operators especially dedicated application Image Generator was developed. Image Generator can generate circular dark targets on bright background and the other way bright targets on dark background. Generating test digital images (*.bmp) with artificial targets in Image Generator requires defining the following parameters: image resolution, pixel size, target radius, distance between targets, brightness of the target and its background, background noise, target edge blur, sharpness level, calibration parameters of digital camera and interest area.. Radiometric parameters of the image are being defined by R, G, B color components and additionally by Gaussian noise with any size and noise strength and two boxfilters (9 and 25 elements mask). Brightness change of targets requires gradient introduction. Geometric image distortions are being modeled by systematic errors by Brown’s and El-Hakim’s and Beyer’s model which includes symmetric radial distortion, asymmetric and tangential radial distortion affinity and a shear of the sensor matrix. The free oriented images are processed with 2D projective transformation. The application additionally allows for creation of interest area for Matching software, image fragment (crop) generation, listing with pixel coordinates and brightness level. The Image Generator application was developed in Delphi 7 programming language. Tests of digital images with artificial targets of various sizes were conducted by automatic coordinates measurement in authors application Matching (CWM – center weighted method and LSM – least square method were applied), as well as in commercial software Pictran DE (LSM method). Measured pixel coordinates of targets centers were compared with theoretical coordinates, which were calculated using Newton method. Pixel coordinates discrepancies on radiometric and geometric distorted images amounted to RMS Δx'y' ≤ 0.3.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 377-386
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inversion of side scan sonar motion and posture in seabed geomorphology
Autorzy:
Tao, W.
Liu, Y.
Hu, H.
Powiązania:
https://bibliotekanauki.pl/articles/258774.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
side scan sonar
image matching
image fusion
neutral network
motion inversion
Opis:
Side scan sonar measurement platform, affected by underwater environment and its own motion precision, inevitably has posture and motion disturbance, which greatly affects accuracy of geomorphic image formation. It is difficult to sensitively and accurately capture these underwater disturbances by relying on auxiliary navigation devices. In this paper, we propose a method to invert motion and posture information of the measurement platform by using the matching relation between the strip images. The inversion algorithm is the key link in the image mosaic frame of side scan sonar, and the acquired motion posture information can effectively improve seabed topography and plotting accuracy and stability. In this paper, we first analyze influence of platform motion and posture on side scan sonar mapping, and establish the correlation model between motion, posture information and strip image matching information. Then, based on the model, a reverse neural network is established. Based on input, output of neural network, design of and test data set, a motion posture inversion mechanism based on strip image matching information is established. Accuracy and validity of the algorithm are verified by the experimental results.
Źródło:
Polish Maritime Research; 2017, S 2; 81-88
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
LEDs based video camera pose estimation
Autorzy:
Sudars, K.
Cacurs, R.
Homjakovs, I.
Judvaitis, J.
Powiązania:
https://bibliotekanauki.pl/articles/200249.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
camera pose estimation
image keypoint detection and matching
3D point reconstruction
object localization and tracking
oszacowanie ustawienia kamery
rekonstrukcja modelu 3D
lokalizacja obiektu
śledzenie obiektu
Opis:
For 3D object localization and tracking with multiple cameras the camera poses have to be known within a high precision. The paper evaluates camera pose estimation via a fundamental matrix and via the known object in environment of multiple static cameras. A special feature point extraction technique based on LED (Light Emitting Diodes) point detection and matching has been developed for this purpose. LED point detection has been solved searching local maximums in images and LED point matching has been solved involving patterned time functions for each light source. Emitting LEDs have been used as sources of known reference points instead of typically used feature point extractors like ORB, SIFT, SURF etc. In such a way the robustness of pose estimation has been obtained. Camera pose estimation is significant for object localization using the networks with multiple cameras which are going to an play increasingly important role in modern Smart Cities environments.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 4; 897-905
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MATSIM - automatyczne dopasowanie pary zdjęć satelitarnych metodą analizy cech przestrzennych
MATSIM - automatic satellite image matching based on spatial features analysis
Autorzy:
Stopa, K.
Nowakowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/130163.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
geometryzacja zdjęć
dopasowanie zdjęć
matching
image geometrization
image matching
Opis:
W codziennej praktyce teledetekcyjnej wielokrotnie zachodzi potrzeba dopasowania zdjęć ”piksel w piksel”. Jest to szczególnie ważne gdy wykonujemy równoczesną klasyfikację kilku zdjęć lub analizy porównawcze, których najlepszym przykładem jest detekcja zmian. Dopasowanie zdjęć satelitarnych, lotniczych, czy też innych danych obrazowych uzyskanych w wyniku skanowania, wykonywane jest najczęściej ręcznie na podstawie określanych przez operatora punktów. W Centrum Badań Kosmicznych PAN w Zespole Obserwacji Ziemi opracowano automatyczną metodę dopasowywania dwóch zdjęć, która działa w postaci niezależnego oprogramowania. W celu wyznaczenia punktów dopasowania na zdjęciu wejściowym i referencyjnym wykonywana jest detekcja krawędzi algorytmem Canny’ego. Następnie znajdowane są linie proste. Przecięcia ich tworzą punkty charakterystyczne, spośród których na obu zdjęciach wybierane są pary odpowiadających sobie punktów dopasowania. Muszą one spełniać określone warunki. Znalezione pary odpowiadających sobie punktów służą wyznaczeniu parametrów macierzy transformacji, na podstawie której wykonywana jest korekcja geometryczna. Zaproponowane podejście charakteryzuje się wysoką dokładnością wyników. Implementację metody wzbogaconą o graficzny interfejs użytkownika udostępniono w postaci oprogramowania matSIM. Jest ono rozpowszechniane na licencji freeware, dzięki czemu może być powszechnie wykorzystywane.
Image geometrization is one of the basic processes in satellite image processing. As a result of the transformations performed, georeference is attached to the image becoming a cartometric image. Depending of the used algorithm, the referencing material can be a map, other image, a vectorial data base, control points interactively determined by an operator or RPC points (Rational Polynomial Coefficient). In everyday practice working with remote sensing means that we work more often with after orthorectification data, realized by image supplier. Despite this, “pixel to pixel” matching is still frequently needed. This is particularly important when we perform simultaneous classification of various images or comparing analyses, for example, detecting change. Image matching of satellite, aerial or other imaging data originated from scanning, is commonly hand made based on marked points by an operator. This is not a difficult process, however time-consuming and often troublesome. Some of the commercial software applications offer functionalities that do this process automatically, but frequently appear in additional paid modules. At the Space Research Centre in Earth Observation Group we have developed an automated image matching method that works integrated in a created stand-alone software. Matching points at reference and input image are marked automatically. To this end, edge detection is performed on the image using Canny’s algorithm. After this, straight lines are identified and on the intersection points between these lines, characteristic image points are created. From these points both images will select corresponding pairs of points to be matched. The points selected for this task must fulfill three conditions. Firstly, maximal and minimal distance between the points must be kept within the defined threshold values. Secondly, the angle between intersected segments that define a matching point must be similar. And at lastly, the correlation coefficient indicating pixel value defined at the surrounding point zone must be the same, allowing a predetermined margin over the defined threshold value. Using the matching points obtained during this process, the parameters of the transformation matrix are obtained, being those parameters the base for geometric image correction. The purposed method is characterized by high accuracy of its results. The firsts tests were performed using Matlab development environment and then, taking in mind the increasing need of high speed performance, the algorithm was adapted to work using C\C++ libraries. Based on this algorithm, we have developed and implemented the software application matSIM. We have released this application under a freeware license and can be commonly used. The user friendly graphic interface improves the usability and facilitates image visualization and selection of used regions of interest where matching points will be searched. Additionally, the application allows changing default parameters such as transformation method used (lineal, bilinear, quadratic) and resampling type (nearest neighbor, bilinear).The input and output data format is GeoTIFF.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 24; 357-366
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda poszukiwania strukturalnie niedokładnej odpowiedniości elementów obrazów poprzez poszukiwanie klik optymalnych
Method of structural inexact image element matching by optimal clique finding
Autorzy:
Bal, A.
Powiązania:
https://bibliotekanauki.pl/articles/152675.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
odpowiedniość elementów obrazów
odpowiedniość grafów
niedokładna odpowiedniość
graf skojarzeniowy
stereokorespondencja
image elements matching
graph matching
inexact matching
association graph
stereo matching
Opis:
W pracy przedstawiono idee nowych, wykorzystujących informacje o strukturze obrazów, metod poszukiwania niedokładnej odpowiedniości elementów obrazów. W prezentowanych metodach poszukiwanie odpowiedniości elementów obrazów sprowadzono do zadania ustalenia niedokładnej odpowiedniości odpowiednio zdefiniowanych grafów. Na potrzeby rozwiązania tego zadnia opracowano metodę poszukiwania odpowiedniości grafów przez poszukiwanie klik optymalnych. Jako przykład zastosowania prezentowanych metod przedstawiono ich wykorzystanie w zadaniu poszukiwania stereokorespondencji.
In this paper the ideas of novel methods for finding inexact correspondence of image elements, using structural information, are presented. Task of matching image elements is reduced to the problem of inexact graph matching in accordingly defined graphs. For solving this problem method of finding graph matching by optimal clique finding was developed. As an example of practical usage of the described methods, their application in problem of stereomatching is presented.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 5, 5; 9-11
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies