Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image classification" wg kryterium: Temat


Tytuł:
A comparison of conventional and deep learning methods of image classification
Porównanie metod klasycznego i głębokiego uczenia maszynowego w klasyfikacji obrazów
Autorzy:
Dovbnych, Maryna
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2055127.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
image classification
machine learning
deep learning
neural networks
klasyfikacja obrazów
uczenie maszynowe
uczenie głębokie
sieci neuronowe
Opis:
The aim of the research is to compare traditional and deep learning methods in image classification tasks. The conducted research experiment covers the analysis of five different models of neural networks: two models of multi–layer perceptron architecture: MLP with two hidden layers, MLP with three hidden layers; and three models of convolutional architecture: the three VGG blocks model, AlexNet and GoogLeNet. The models were tested on two different datasets: CIFAR–10 and MNIST and have been applied to the task of image classification. They were tested for classification performance, training speed, and the effect of the complexity of the dataset on the training outcome.
Celem badań jest porównanie metod klasycznego i głębokiego uczenia w zadaniach klasyfikacji obrazów. Przeprowa-dzony eksperyment badawczy obejmuje analizę pięciu różnych modeli sieci neuronowych: dwóch modeli wielowar-stwowej architektury perceptronowej: MLP z dwiema warstwami ukrytymi, MLP z trzema warstwami ukrytymi; oraz trzy modele architektury konwolucyjnej: model z trzema VGG blokami, AlexNet i GoogLeNet. Modele przetrenowano na dwóch różnych zbiorach danych: CIFAR–10 i MNIST i zastosowano w zadaniu klasyfikacji obrazów. Zostały one zbadane pod kątem wydajności klasyfikacji, szybkości trenowania i wpływu złożoności zbioru danych na wynik trenowania.
Źródło:
Journal of Computer Sciences Institute; 2021, 21; 303--308
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A computer aided dignostic system for survival analysis after EVAR treatment of EVAR
Autorzy:
Maiora, J.
Grańa, M.
Powiązania:
https://bibliotekanauki.pl/articles/333534.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
analiza obrazów medycznych
rejestracja
klasyfikacja
medical image analysis
registration
classification
Opis:
Abdominal Aortic Aneurysm (AAA) is a local dilation of the Aorta that occurs between the renal and iliac arteries. Recently developed treatment involves the insertion of a endovascular prosthetic (EVAR), which has the advantage of being a minimally invasive procedure but also requires monitoring to analyze postoperative patient outcomes. The most widespread method for monitoring is computerized axial tomography (CAT) imaging, which allows 3D reconstructions and segmentations of the aorta's lumen of the patient under study. Previously published methods measure the deformation of the aorta between two studies of the same patient using image registration techniques. This paper applies neural network and statistical classifiers to build a predictor of patient survival. The features used for classification are the volume registration quality measures after each of the image registration steps. This system provides the medical team an additional decision support tool.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 18; 51-58
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid statistical approach for texture images classification based on scale invariant features and mixture gamma distribution
Autorzy:
Benlakhdar, Said
Rziza, Mohammed
Thami, Rachid Oulad Haj
Powiązania:
https://bibliotekanauki.pl/articles/29520269.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
statistical image modeling
SIFT
mixture gamma distribution
uniform discrete curvelet transform
classification
Opis:
Image classification refers to an important process in computer vision. The purpose of this paper is to propose a novel approach named GGD-GMM and based on statistical modeling in wavelet domain to describe textured images and rely on number of principles which give its internal coherence and originality. Firstly, we propose a robust algorithm based on the combination of the wavelet transform and Scale Invariant Feature Transform. Secondly, we implement the aforementioned algorithm and fit the result using the finite mixture gamma distribution (GMM). The results, obtained for two benchmark datasets, show that the proposed algorithm has a good relevance as it provides higher classification accuracy compared to some other well known models see (Kohavi, 1995). Moreover, it shows other advantages relied to Noise-resistant and rotation invariant.
Źródło:
Computer Methods in Materials Science; 2020, 20, 3; 95-106
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A sorting method for coal and gangue based on surface grayness and glossiness
Metoda sortowania węgla i skały płonnej na podstawie szarości i połysku powierzchni
Autorzy:
Cheng, Gang
Wei, Yifan
Chen, Jie
Pan, Zeye
Powiązania:
https://bibliotekanauki.pl/articles/27311660.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
surface glossiness
gangue recognition
image recognition
supervised classification
grey wolf algorithm
support vector machine
połysk powierzchni
rozpoznawanie skały płonnej
rozpoznawanie obrazu
klasyfikacja nadzorowana
algorytm szarych wilków
maszyna wektorów nośnych
Opis:
Sorting coal and gangue is important in raw coal production; accurately identifying coal and gangue is a prerequisite for effectively separating coal and gangue. The method of extracting coal and gangue using image grayscale information can effectively identify coal and gangue, but the recognition rate of the sorting process based on image grayscale information needs to substantially higher than that which is needed to meet production requirements. A sorting method of coal and gangue using object surface grayscale-gloss characteristics is proposed to improve the recognition rate of coal and gangue. Using different comparative experiments, bituminous coal from the Huainan area was used as the experimental object. It was found that the number of pixel points corresponding to the highest level grey value of the grayscale moment and illumination component of the coal and gangue images were combined into a total discriminant value and used as input for the best classification of coal and gangue using the GWO-SVM classification model. The recognition rate could reach up to 98.14%. This method sorts coal and gangue by combining surface greyness and glossiness features, optimizes the traditional greyness-based recognition method, improves the recognition rate, makes the model generalizable, enriches the research on coal and gangue recognition, and has theoretical and practical significance in enterprise production operations.
Sortowanie węgla i skały płonnej jest ważne w produkcji węgla surowego; dokładna identyfikacja węgla i skały płonnej jest warunkiem wstępnym skutecznego oddzielenia tych surowców. Metoda rozdzielenia węgla i skały płonnej przy użyciu informacji w skali szarości obrazu może skutecznie identyfikować węgiel i skałę płonną, ale stopień rozpoznawania procesu sortowania w oparciu o te informacje być znacznie wyższy niż wymagany do spełnienia wymagań produkcyjnych. W artykule zaproponowano metodę sortowania węgla i skały płonnej wykorzystującą charakterystykę połysku i skali szarości powierzchni obiektu w celu poprawy szybkości rozpoznawania węgla i skały płonnej. W badaniach wykorzystano próbki węgla kamiennego z obszaru Huainan. Stwierdzono, że liczbę punktów pikseli odpowiadającą najwyższemu poziomowi szarości momentu w skali szarości i składowej oświetlenia obrazów węgla i skały płonnej połączono w całkowitą wartość dyskryminującą i wykorzystano jako dane wejściowe dla najlepszej klasyfikacji węgla i skały płonnej przy użyciu modelu klasyfikacji GWO-SVM. Wskaźnik rozpoznawalności może osiągnąć nawet 98,14%. Ta metoda sortowania węgla i skały płonnej poprzez połączenie cech szarości i połysku powierzchni, optymalizuje tradycyjną metodę rozpoznawania w oparciu o szarość, poprawia współczynnik rozpoznawania, umożliwia uogólnienie modelu, wzbogaca badania nad rozpoznawaniem węgla i skały płonnej, ma znaczenie teoretyczne i praktyczne w operacjach produkcyjnych przedsiębiorstwa.
Źródło:
Gospodarka Surowcami Mineralnymi; 2023, 39, 3; 173--198
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms
Autorzy:
Karanam, Santoshachandra Rao
Srinivas, Y.
Chakravarty, S.
Powiązania:
https://bibliotekanauki.pl/articles/38702595.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
musculoskeletal image
image processing
image enhancement
fracture diagnosis
fracture classification
deep neural network
obraz układu mięśniowo-szkieletowego
przetwarzanie obrazu
wzmocnienie obrazu
diagnoza złamania
klasyfikacja złamań
głęboka sieć neuronowa
Opis:
Bone fractures break bone continuity. Impact or stress causes numerous bone fractures. Fracture misdiagnosis is the most frequent mistake in emergency rooms, resulting in treatment delays and permanent impairment. According to the Indian population studies, fractures are becoming more common. In the last three decades, there has been a growth of 480 000, and by 2022, it will surpass 600 000. Classifying X-rays may be challenging, particularly in an emergency room when one must act quickly. Deep learning techniques have recently become more popular for image categorization. Deep neural networks (DNNs) can classify images and solve challenging problems. This research aims to build and evaluate a deep learning system for fracture identification and bone fracture classification (BFC). This work proposes an image-processing system that can identify bone fractures using X-rays. Images from the dataset are pre-processed, enhanced, and extracted. Then, DNN classifiers ResNeXt101, InceptionResNetV2, Xception, and NASNetLarge separate the images into the ones with unfractured and fractured bones (normal, oblique, spiral, comminuted, impacted, transverse, and greenstick). The most accurate model is InceptionResNetV2, with an accuracy of 94.58%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 369-385
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A visual mining based framework for classification accuracy estimation
Podstawy wizualnej eksploracji do szacowania dokładności klasyfikacji
Autorzy:
Arun, P. V.
Powiązania:
https://bibliotekanauki.pl/articles/145456.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
teledetekcja
klasyfikacja obrazu
wizualizacja
data mining
remote sensing
decision tree
image classification
visualization
Weka
Prefuse
Opis:
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images.
echniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
Źródło:
Geodesy and Cartography; 2013, 62, 2; 113-121
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Accuracy assessment of automatic image processing for land cover classification of St. Petersburg protected area
Ocena dokładności automatycznej klasyfikacji pokrycia terenu dla obszaru chronionego Sankt Petersburga
Autorzy:
Bogoliubova, A.
Tymków, P.
Powiązania:
https://bibliotekanauki.pl/articles/341513.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
overall accuracy
automatic image processing
protected area
land cover/use
supervised classification
dokładność całkowita klasyfikacji
automatyczne przetwarzanie obrazów
obszary chronione
klasyfikacja pokrycia/użytkowania terenu
klasyfikacja nadzorowana
Opis:
This study analyzes the evaluation of land cover supervised classification quality. Authors put forward the hypothesis that the overall accuracy of image classification depends on its division into parts of the same area. The dependence is described by the logarithmic curve – Т = 4.3004·ln(x) + 72.697, because the determination coefficient is maximum (R2 = 0.9678). The research area was the Yuntolovo reserve, the protected area near St. Petersburg (Russia). In order to increase the overall accuracy of the land cover automatic classification based on aerial images, a new methodology of data preprocessing was introduced. The proposed method of estimating the overall classification accuracy of land cover protected areas increases on average by 10% by dividing the source aerial image into no more than 10 equal parts. With further partitioning of the image into parts of the same area, the overall accuracy is slightly increased. Pixel-based image analysis of supervised classification and error matrix were evaluated using ILWIS 3.31 software and in our own software in .NET environment.
W pracy dokonano analizy sposobów oceny jakości klasyfikacji pokrycia terenu na danych obrazowych. Autorzy wysunęli hipotezę, że ogólna dokładność klasy- fikacji obrazu zależy od jego podziału w procesie klasyfikacji na podobszary. Zależność tę opisano krzywą logarytmiczną Т = 4,3004⋅ln(x) + 72,697, dla której uzyskano najwyższy współczynnik determinacji (R2 = 0,9678). Badania prowadzono dla rezerwatu Yuntolovo, chronionego obszaru w pobliżu Sankt Petersburga (Rosja). W celu zwiększenia ogólnej dokładności automatycznej klasyfikacji pokrycia terenu na podstawie zdjęć lotniczych autorzy zaproponowali nową metodologię wstępnego przetwarzania danych. Proponowana metoda, polegająca na podziale obrazu klasyfikowanego na nie więcej niż dziesięć równych części, poprawia ogólną dokładność klasyfikacji pokrycia obszarów lądowych średnio o 10%. Podział na większą liczbę części nie zwiększa już znacząco jakości klasyfikacji, a dodatkowo wprowadza niejednoznaczności spowodowane zmniejszaniem próby uczącej. Klasyfikację obrazów i analizę dokładności prowadzono z wykorzystaniem pakietu ILWIS 3.31 oraz autorskiego oprogramowania stworzonego w środowisku NET.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2014, 13, 1-2; 5-22
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza możliwości automatycznej detekcji obiektów topograficznych na zdjęciach lotniczych i satelitarnych VHR
Analysis of the possibility of automatic detection of topographic objects in aerial and satellite images of the VHR
Autorzy:
Pluto-Kossakowska, Joanna
Kamiński, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2058369.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
uczenie maszynowe
klasyfikacja obrazów
obiekty topograficzne
machine learning
image classification
topographical objects
Opis:
W artykule podjęto temat uczenia maszynowego w rozpoznawaniu obiektów topograficznych na zdjęciach lotniczych i satelitarnych VHR ze szczególnym uwzględnieniem Bazy Danych Obiektów Topograficznych BDOT10k. Celem prac badawczych było przetestowanie trzech algorytmów klasyfikacji nadzorowanej do automatycznej detekcji wybranych klas obiektów topograficznych, m.in.: budynków, betonowych oraz asfaltowych elementów szarej infrastruktury (drogi, chodniki, place), wód powierzchniowych, lasów, terenów zadrzewionych i zakrzewionych, terenów o niskiej roślinności oraz gleby odkrytej (grunty nieużytkowane, wyrobiska). Przeanalizowano trzy powszechnie stosowane klasyfikatory: Maximum Likelihood, Support Vector Machine oraz Random Trees pod kątem różnych parametrów wejściowych. Wynikiem przeprowadzonych badań jest ocena ich skuteczności w detekcji poszczególnych klas oraz ocena przydatności wyników klasyfikacji do aktualizacji bazy danych BDOT10k. Badania zostały przeprowadzone dla zdjęcia satelitarnego WorldView-2 o rozdzielczości przestrzennej 0,46 m oraz ortofotomapy ze zdjęć lotniczych o dokładności przestrzennej 0,08 m. Wyniki badań wskazują na to, że wykorzystanie różnych klasyfikatorów uczenia maszynowego oraz danych źródłowych wpływa nieznacznie na wynik klasyfikacji. Ogólne statystyki dokładności wskazują, że całościowo klasyfikacja z wykorzystaniem zdjęć satelitarnych dała nieco lepsze rezultaty o kilka punktów procentowych w granicach 76-81%, a dla zdjęć lotniczych 75-78%. Natomiast dla niektórych klas miara statystyczna F1 przekracza wartość 0,9. Testowane algorytmy uczenia maszynowego dają bardzo dobre rezultaty w identyfikacji wybranych obiektów topograficznych, ale nie można jeszcze mówić o bezpośredniej aktualizacji BDOT10k.
The article deals with the topic of machine learning (ML) in the recognition of topographic objects in aerial and satellite VHR image, with particular emphasis on the Topographic Objects Database (BDOT10k). The aim of the research work was to test three supervised classification algorithms for automatic detection of selected classes of topographic objects, including: buildings, concrete and asphalt elements of grey infrastructure (roads, pavements, squares), surface waters, forests, wooded and bushy areas, areas with low vegetation and uncovered soil (unused lands or excavations). Three commonly used classifiers were analysed: Maximum Likelihood, Support Vector Machine and Random Trees for different input parameters. The result of the research is the assessment of their effectiveness in the detection of individual classes and the assessment of the suitability of the classification results for updating the BDOT10k database. The research was carried out for the WorldView-2 satellite image with a spatial resolution of 0.46 m and orthophotos from aerial images with a spatial resolution of 0.08 m. The research results indicate that the use of different ML classifiers and source data slightly affects the classification result. Overall accuracy statistics show that the classification using satellite images gave slightly better results by a few percentage points in the range from 76% to 81%, and for aerial photos from 75% to 78%. However, for some classes the statistical measure F1 exceeds 0.9 value. The tested ML algorithms give very good results in identifying selected topographic objects, but it is not yet possible to directly update topographical database.
Źródło:
Teledetekcja Środowiska; 2022, 62; 5-15
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Clothing Image Classification Models: A Comparison Study between Traditional Machine Learning and Deep Learning Models
Autorzy:
Xu, Jun
Wei, Yumeng
Wang, Aichun
Zhao, Heng
Lefloch, Damien
Powiązania:
https://bibliotekanauki.pl/articles/2200761.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
e-commerce
clothing image classification
traditional machine learning
CNN
HOG
SVM
small VGG network
Opis:
Clothing image in the e-commerce industry plays an important role in providing customers with information. This paper divides clothing images into two groups: pure clothing images and dressed clothing images. Targeting small and medium-sized clothing companies or merchants, it compares traditional machine learning and deep learning models to determine suitable models for each group. For pure clothing images, the HOG+SVM algorithm with the Gaussian kernel function obtains the highest classification accuracy of 91.32% as compared to the Small VGG network. For dressed clothing images, the CNN model obtains a higher accuracy than the HOG+SVM algorithm, with the highest accuracy rate of 69.78% for the Small VGG network. Therefore, for end-users with only ordinary computing processors, it is recommended to apply the traditional machine learning algorithm HOG+SVM to classify pure clothing images. The classification of dressed clothing images is performed using a more efficient and less computationally intensive lightweight model, such as the Small VGG network.
Źródło:
Fibres & Textiles in Eastern Europe; 2022, 5 (151); 66--78
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anonymous traffic classification based on three-dimensional Markov image and deep learning
Autorzy:
Tang, Xin
Li, Huanzhou
Zhang, Jian
Tang, Zhangguo
Wang, Han
Cai, Cheng
Powiązania:
https://bibliotekanauki.pl/articles/27311448.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
anonymous network
traffic classification
three-dimensional Markov image
output self-attention
deep learning
sieć anonimowa
klasyfikacja ruchu
trójwymiarowy obraz Markowa
samouwaga wyjściowa
uczenie głębokie
Opis:
Illegal elements use the characteristics of an anonymous network hidden service mechanism to build a dark network and conduct various illegal activities, which brings a serious challenge to network security. The existing anonymous traffic classification methods suffer from cumbersome feature selection and difficult feature information extraction, resulting in low accuracy of classification. To solve this problem, a classification method based on three-dimensional Markov images and output self-attention convolutional neural network is proposed. This method first divides and cleans anonymous traffic data packets according to sessions, then converts the cleaned traffic data into three-dimensional Markov images according to the transition probability matrix of bytes, and finally inputs the images to the output self-attention convolution neural network to train the model and perform classification. The experimental results show that the classification accuracy and F1-score of the proposed method for Tor, I2P, Freenet, and ZeroNet can exceed 98.5%, and the average classification accuracy and F1-score for 8 kinds of user behaviors of each type of anonymous traffic can reach 93.7%. The proposed method significantly improves the classification effect of anonymous traffic compared with the existing methods.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e145676
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aparaturowe i metodologiczne aspekty ilościowej analizy mikrostruktury żeliwa
Quantitative analysis of cast iron microstructure in terms of the apparatus and methodology
Autorzy:
Warmuzek, M.
Boroń, Ł.
Tchórz, A.
Powiązania:
https://bibliotekanauki.pl/articles/391395.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Odlewnictwa
Tematy:
mikrostruktura
analiza obrazu
grafit
żeliwo
parametry stereologiczne
klasyfikacja grafitu
microstructure
image analysis
graphite
cast iron
stereological parameters
graphite classification
Opis:
W pracy porównano wyniki zastosowania różnych systemów obrazowania mikrostruktury (mikroskop świetlny oraz tomograf rentgenowski) oraz różnych systemów analizy obrazu do pomiaru wybranych parametrów stereologicznych i geometrycznych dla dwóch modeli morfologicznych, występujących w stopach odlewniczych, na przykładzie żeliwa z grafitem sferoidalnym i kratkowym. Wykazano statystycznie istotne różnice pomiędzy uzyskanymi wynikami pomiarów, spowodowane przede wszystkim jakością obrazu poddanego analizie oraz lokalnymi cechami geometrycznymi analizowanych obiektów. Porównano wyniki klasyfikacji wydzieleń grafitu według klas wielkości przyjętych w obowiązującej normie PN-EN ISO 945-1, przeprowadzonej na podstawie różnych procedur obrazowania.
In this work the results of the application of different imaging techniques and image analysis systems for measurements of chosen either stereological parameters or geometrical features for some of morphology models occurring in the cast alloys, especially taking into account cast iron with either spheroidal or vermicular graphite have been compared and interpreted. The statistical important difference of the obtained results have been stated and recognized as caused first of all by quality of analyzed images and local geometry features of the analyzed objects. The results of the graphite particles classification according to the size class in the actual standard PN-EN ISO 945-1, using different imaging and analysis procedures.
Źródło:
Prace Instytutu Odlewnictwa; 2011, 51, 3; 59-87
1899-2439
Pojawia się w:
Prace Instytutu Odlewnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of deep learning techniques in identification of the structure of selected road materials
Zastosowanie techniki głębokiego uczenia do identyfikacji struktury wybranych materiałów drogowych
Autorzy:
Mazurek, Grzegorz
Durlej, Małgorzata
Šrámek, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/27314909.pdf
Data publikacji:
2023
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Tematy:
deep learning
tomograph
R programming language
classification
road surfaces
correlation
digital image
głębokie uczenie
tomograf
język programowania R
klasyfikacja
nawierzchnie drogowe
korelacja
obraz cyfrowy
Opis:
In research, there is a growing interest in using artificial intelligence to find solutions to difficult scientific problems. In this paper, a deep learning algorithm has been applied using images of samples of materials used for road surfaces. The photographs showed cross-sections of random samples taken with a CT scanner. Historical samples were used for the analysis, located in a database collecting information over many years. The deep learning analysis was performed using some elements of the VGG16 network architecture and implemented using the R language. The learning and training data were augmented and cross-validated. This resulted in the high level of 96.4% quality identification of the sample type and its selected structural features. The photographs in the identification set were correctly identified in terms of structure, mix type and grain size. The trained model identified samples in the domain of the dataset used for training in a very good way. As a result, in the future such a methodology may facilitate the identification of the type of mixture, its basic properties and defects.
W badaniach naukowych obserwuje się coraz większe zainteresowanie wykorzystaniem sztucznej inteligencji do poszukiwania rozwiązań trudnych problemów naukowych. W niniejszym artykule został zastosowany algorytm głębokiego uczenia z użyciem obrazów próbek materiałów wykorzystywanych do budowy nawierzchni drogowych. Fotografie przedstawiały przekroje losowych próbek wykonane za pomocą tomografu komputerowego. Do analizy wykorzystano próbki historyczne, znajdujące się w bazie danych zbierającej informacje z wielu lat. Analizę głębokiego uczenia wykonano przy użyciu niektórych elementów architektury sieci VGG16 i zaimplementowano, stosując język R. Dane uczące oraz treningowe poddano augmentacji oraz walidacji krzyżowej. W rezultacie uzyskano wysoki poziom 96,4% jakości identyfikacji rodzaju próbki oraz jej wybranych cech strukturalnych. Fotografie w zbiorze identyfikacyjnym zostały poprawnie zidentyfikowane pod względem struktury, typu mieszanki oraz uziarnienia. Wytrenowany model w bardzo dobry sposób zidentyfikował próbki w obszarze dziedziny trenowanego zbioru danych. W rezultacie taka metodyka może w przyszłości ułatwić identyfikację rodzaju mieszanki, jej podstawowych właściwości oraz defektów.
Źródło:
Structure and Environment; 2023, 15, 3; 159--167
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of image texture analysis for varietal classification of barley
Autorzy:
Zapotoczny, P.
Powiązania:
https://bibliotekanauki.pl/articles/26635.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
digital image analysis
texture
classification
barley
texture parameter
biological product
statistical model
Opis:
This paper presents the results of a study into the use of the texture parameters of barley kernel images in varietal classification. A total of more than 270 textures have been calculated from the surface of single kernels and bulk grain. The measurements were performed in four channels from a 24 bit image. The results were processed statistically by variable reduction and general discriminant analysis. Classification accuracy was more than 99%.
Źródło:
International Agrophysics; 2012, 26, 1
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of pattern recognition methods to automatic identification of microscopic images of rocks registered under different polarization and lighting conditions
Autorzy:
Ślipek, B.
Młynarczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/184708.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
pattern recognition
automatic rock classification
image processing
Opis:
The paper presents the results of the automatic classification of rock images, taken under an optical microscope under different lighting conditions and with different polarization angles. The classification was conducted with the use of four pattern recognition methods: nearest neighbor, k-nearest neighbors, nearest mode, and optimal spherical neighborhoods on thin sections of five selected rocks. During research the CIELAB color space and the 9D feature space were used. The results indicate that changing both lighting conditions and polarization angles results in worsening the classification outcome, although not substantially. Duduring the automatic classification of rocks photographed under different lighting and polarization conditions, the highest number of correctly classified rocks (97%) is given by the nearest neighbor method. The results show that the automatic classification of rocks is possible within a predefined group of rocks. The results also indicate the optimal spherical neighborhoods method to be the safest method out of those tested, which means that it returns the lowest number of incorrect classifications.
Źródło:
Geology, Geophysics and Environment; 2013, 39, 4; 373-384
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Two Dimensional Wavelet Transform for Classification of Power Quality Disturbances
Autorzy:
Mollayi, N.
Mokhtari, H.
Powiązania:
https://bibliotekanauki.pl/articles/262752.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Tematy:
power quality
event detection and classification
two dimensional wavelet transform
pattern classification
image processing
feature
classifier system
Opis:
Identification of voltage and current disturbances is an important task in power system monitoring and protection. In this paper, the application of two-dimensional wavelet transform for characterization of a wide variety range of power quality disturbances is discussed, and a new algorithm, based on image processing techniques is proposed for this purpose. A matrix is formed based on a specified number of cycles in such a way that the samples of voltage signal in each cycle form one row of that matrix. This matrix can be regarded as a two dimensional image. A two-dimensional wavelet transform is used to decompose the image into approximation and details, which contain low frequency and high frequency components along the rows and columns, respectively. Different disturbances result into different special patterns in detail images. By processing the detail images, specific features are defined which can suitably discriminate various types of disturbances. Combination of the feature generation algorithm and a classifier system leads to a smart system for classification of wide variety range of disturbances.
Źródło:
Electrical Power Quality and Utilisation. Journal; 2014, 17, 2; 1-7
1896-4672
Pojawia się w:
Electrical Power Quality and Utilisation. Journal
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies