Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image classification" wg kryterium: Temat


Tytuł:
Гідралагічны код беларускага фальклору
Hydrologiczny kod folkloru białoruskiego
Hydrological code of the Belarusian folklore
Autorzy:
Швед, Іна
Powiązania:
https://bibliotekanauki.pl/articles/944690.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet w Białymstoku. Wydawnictwo Uniwersytetu w Białymstoku
Tematy:
hydrological code
symbol
image
system
classification
Belarusian folklore
kod hydrologiczny
obraz
klasyfikacja
folklor
białoruski
Opis:
W artykule omówiono teoretyczne i metodologiczne podstawy badań kodu hydrologicznego, jego strukturę, parametry typologiczne, powiązania z kodami pokrewnymi – substancji, zjawisk naturalnych i innych. Zrekonstruowano semantykę i symbolikę podstawowych elementów kodu hydrologicznego – morza, rzeki, jeziora, bagna, źródła, studni.
The article considers the theoretical and methodological bases of hydrological code research, its structural and typological parameters and links with related codes – substances, elements, natural phenomena, etc. There are also reconstructed semantics and symbolism of the main elements of the hydrological code – sea, river, lake, swamp, spring, well.
Źródło:
Białorutenistyka Białostocka; 2014, 6; 245-268
2081-2515
Pojawia się w:
Białorutenistyka Białostocka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Гідралагічны код беларускага фальклору
Hydrologiczny kod folkloru białoruskiego
Hydrological code of the Belarusian folklore
Autorzy:
Швед, Іна
Powiązania:
https://bibliotekanauki.pl/articles/2106246.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet w Białymstoku. Wydawnictwo Uniwersytetu w Białymstoku
Tematy:
kod hydrologiczny
symbol
obraz
system
klasyfikacja
folklor białoruski
hydrological code
image
classification
Belarusian folklore
Opis:
W artykule omówiono teoretyczne i metodologiczne podstawy badań kodu hydrologicznego, jego strukturę, parametry typologiczne, powiązania z kodami pokrewnymi – substancji, zjawisk naturalnych i innych. Zrekonstruowano semantykę i symbolikę podstawowych elementów kodu hydrologicznego – morza, rzeki, jeziora, bagna, źródła, studni.
The article considers the theoretical and methodological bases of hydrological code research, its structural and typological parameters and links with related codes – substances, elements, natural phenomena, etc. There are also reconstructed semantics and symbolism of the main elements of the hydrological code – sea, river, lake, swamp, spring, well.
Źródło:
Białorutenistyka Białostocka; 2014; 245-268
2081-2515
Pojawia się w:
Białorutenistyka Białostocka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of image texture analysis for varietal classification of barley
Autorzy:
Zapotoczny, P.
Powiązania:
https://bibliotekanauki.pl/articles/26635.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
digital image analysis
texture
classification
barley
texture parameter
biological product
statistical model
Opis:
This paper presents the results of a study into the use of the texture parameters of barley kernel images in varietal classification. A total of more than 270 textures have been calculated from the surface of single kernels and bulk grain. The measurements were performed in four channels from a 24 bit image. The results were processed statistically by variable reduction and general discriminant analysis. Classification accuracy was more than 99%.
Źródło:
International Agrophysics; 2012, 26, 1
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dyskryminacja odmian ziarna pszenicy na podstawie cech geometrycznych
Discrimination of wheat seed varieties on the basis of geometrical characteristics
Autorzy:
Zapotoczny, P.
Powiązania:
https://bibliotekanauki.pl/articles/291520.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
ziarno
analiza obrazu
klasyfikacja
geometria
seed
image analysis
classification
geometry
Opis:
Celem pracy było poszukiwanie takich wyróżników geometrii 16 odmian ziarna pszenicy, które pozwolą na ich dyskryminacje. Do identyfikacji właściwości geometrycznych wykorzystano stanowisko do komputerowej analizy obrazu, oparte na pozyskiwania obrazu ziarniaków za pomocą aparatu fotograficznego. Każdy z ziarniaków został opisany przez 66 zmiennych geometrycznych. Analiza statystyczna wyników przebiegała dwuetapowo. W pierwszym etapie przeprowadzono redukcję zmiennych do najlepiej dyskryminujących, natomiast w drugim etapie przeprowadzono analizę dyskryminacyjną. Błąd klasyfikacji odmian jarych wyniósł 10,55%, natomiast odmian ozimych 4,58%.
The purpose of the work was to try to find these geometry characteristics for 16 wheat seed varieties, which will allow their discriminations. Workstation for computer image analysis, based on acquiring seed image using a camera, was used for identifying geometrical properties. Each seed was described by 66 geometrical variables. Statistical analysis of results proceeded in two stages. The first stage involved reduction of variables to those discriminating best, whereas discriminant analysis was made in the second stage. Classification error for spring varieties was 10.55%, and 4.58% for winter varieties.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 319-328
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Clothing Image Classification Models: A Comparison Study between Traditional Machine Learning and Deep Learning Models
Autorzy:
Xu, Jun
Wei, Yumeng
Wang, Aichun
Zhao, Heng
Lefloch, Damien
Powiązania:
https://bibliotekanauki.pl/articles/2200761.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
e-commerce
clothing image classification
traditional machine learning
CNN
HOG
SVM
small VGG network
Opis:
Clothing image in the e-commerce industry plays an important role in providing customers with information. This paper divides clothing images into two groups: pure clothing images and dressed clothing images. Targeting small and medium-sized clothing companies or merchants, it compares traditional machine learning and deep learning models to determine suitable models for each group. For pure clothing images, the HOG+SVM algorithm with the Gaussian kernel function obtains the highest classification accuracy of 91.32% as compared to the Small VGG network. For dressed clothing images, the CNN model obtains a higher accuracy than the HOG+SVM algorithm, with the highest accuracy rate of 69.78% for the Small VGG network. Therefore, for end-users with only ordinary computing processors, it is recommended to apply the traditional machine learning algorithm HOG+SVM to classify pure clothing images. The classification of dressed clothing images is performed using a more efficient and less computationally intensive lightweight model, such as the Small VGG network.
Źródło:
Fibres & Textiles in Eastern Europe; 2022, 5 (151); 66--78
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of lip prints using Fuzzy c-Means clustering
Autorzy:
Wrobel, K.
Froelich, W.
Powiązania:
https://bibliotekanauki.pl/articles/333981.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
lip print
image processing
clustering techniques
data classification
grafika wargowa
przetwarzanie obrazu
metody grupowania
klasyfikacja danych
Opis:
In this paper a new method for lip print recognition is proposed. The proposed approach is based on Fuzzy c-Means clustering of the characteristics features of lip prints. First, the Hough transform is applied for the recognition of the characteristic features within lip prints, then Fuzzy c-Means clustering is performed to cluster those features. The proposed algorithm applies the results of clustering to find an unknown image withing the collected repository of lip prints. Instead of comparing all pairs of individual characteristic features, the proposed algorithm uses the representatives of clusters for the comparison of images. The advantage of using the proposed method is its increased tolerance to the noise in data and thus the increased efficiency of the recognition. The effectiveness of presented method has been verified experimentally using real-world images. The results are satisfactory and suggest the possibility of using the method in forensic identification systems
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 67-73
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Verification of the image processing system in real conditions
Weryfikacja systemu przetwarzania obrazu w warunkach rzeczywistych
Autorzy:
Wołejsza, Piotr
Koszelew, Jolanta
Matuk, Krzysztof
Świda, Oskar
Powiązania:
https://bibliotekanauki.pl/articles/2058442.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu
Tematy:
image processing systems
detection
classification of objects
geolocalization of objects
collision avoidance system
system przetwarzania obrazów
detekcja
klasyfikacja obiektów
geolokalizacja obiektów
system unikania kolizji
Opis:
AVAL – Autonomous Vessel with an Air Look, is a research project that aims to develop autonomous navigation of ships. The system uses three independent sources of information i.e. radar, AIS – Automatic Identification System and cameras, which can be located on a drone or ship’s superstructure. The article presents the results of testing of an image processing system in real conditions on m/f Wolin.
AVAL – Autonomous Vessel with a Air Look, to projekt badawczy, którego celem jest opracowanie autonomicznej nawigacji statków. System wykorzystuje trzy niezależne źródła informacji tj. radar, AIS – System Automatycznej Identyfikacji oraz kamery, które mogą być umieszczone na dronie lub nadbudówce statku. W artykule przedstawiono wyniki testowania systemu przetwarzania obrazu w warunkach rzeczywistych na m/f Wolin.
Źródło:
Journal of Automation, Electronics and Electrical Engineering; 2021, 3, 1; 33--37
2658-2058
2719-2954
Pojawia się w:
Journal of Automation, Electronics and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody Rozpoznawania Wzorców Obrazów w Analizie Wskaźników Dermatoglificznych Zespołu Downa
Image pattern recognition methods in analysis of dermatoglyphic indices of Downs Syndrome
Autorzy:
Wojtowicz, H.
Wajs, W.
Powiązania:
https://bibliotekanauki.pl/articles/152598.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
poprawianie jakości obrazu
filtry adaptacyjne
rozpoznawanie wzorców
maszyny wektorów wspierających
diagnostyka medyczna
image quality
enhancement
adaptive filters
pattern recognition
classification of impressions of hallucal area of sole
support vector machines
medical diagnostics
Opis:
Klasyfikacja odbitek wzorców w polu palucha na stopach jest jest jednym z zadań analizy dermatoglificznej wykonywanej przez antropologa do wykrywania wad genetycznych u noworodków. Artykuł opisuje zastosowanie metod przetwarzania obrazów i rozpoznawania wzorców do klasyfikacji obrazów odbitek wzorców w polu halukalnym stóp. Opisana została metoda klasyfikacji odbitek tych wzorców. Do poprawienia jakości obrazów zastosowano zabiegi poprawiania kontrastu obrazu, segmentacji tła oraz kontekstowej filtracji obrazu za pomocą krótkoczasowej transformaty Fouriera. Zaproponowano zastosowanie algorytmu opartego na rozkładzie piramidowym w wielu skalach do wyznaczenia kierunków pływów listewek odbitek. W artykule opisane i przedyskutowane zostały modele klasyfikatorów obrazów odbitek wzorców w polu palucha na stopach. Klasyfikatory te stanowią część automatycznego systemu diagnostycznego służącego do badań przesiewowych na obecności trisomii 21 (zespołu Downa). System wspomaga pracę antropologa poprzez automatyczne przetwarzanie i wykrywanie własności wskazujących na obecność wad genetycznych. Obrazy dermatoglifów są wstępnie przetwarzane przed procesem klasyfikacji w celu wydobycia wektorów własności analizowanych przez Maszyny Wektorów Wspierających. Funkcje jądrowe oparte na radialnych funkcjach bazowych zostały użyte w procesie indukcji wieloklasowego systemu Maszyn Wektorów Wspierających generowanego według algorytmu 'jeden przeciwko jednemu'. Badania wykonane na danych pochodzących z Collegium Medicum Uniwersytetu Jagielońskiego w Krakowie, pokazują efektywność zaproponowanego podejścia w poprawianiu jakości obrazów odbitek wzorców w polu palucha na stopach i ich klasyfikacji.
Classification of patterns of hallucal area of sole is one of the tasks of dermatoglyphic analysis. The paper describes application of image processing and pattern recognition methods to classification of impressions of hallucal area of sole. Contrast enhancement, segmentation and contextual filtration techniques are used to enhance quality of the images. Use of an algorithm based on multi-scale pyramid decomposition of an image is proposed for ridge orientation calculation. Hallucal area pattern classifiers, which are part of an automatic system for rapid screen diagnosing of trisomy 21 (Down's Syndrome) in infants, are created and discussed. The system is a tool supporting medical decision by automatic processing of dermatoglyphic prints and detecting features indicating presence of genetic disorder. Images of dermatoglyphic prints are pre-processed before the classification stage to extract features analysed by Support Vector Machines algorithm. RBF kernel type is used in the training of SVM multi-class systems generated with one-vs-one scheme. Experiments conducted on the database of Collegium Medicum of the Jagiellonian University in Cracow show effectiveness of the proposed approach to classification of infants' fingerprints.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 9, 9; 1000-1004
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of unmanned aerial vehicles (drones) to determine the shoreline of natural watercourses
Wykorzystanie bezzałogowych statków latających (dronów) do ustalania linii brzegowej cieków naturalnych
Autorzy:
Wilkowski, W.
Lisowski, M.
Wyszyński, M.
Wierzbicki, D.
Powiązania:
https://bibliotekanauki.pl/articles/292459.pdf
Data publikacji:
2017
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
image classification
orthophotomap
Shoreline
unmanned aerial vehicle
bezzałogowy statek latający (dron)
klasyfikacja obrazu
linia brzegowa
ortofotomapa
Opis:
The aim of the paper was to study the possibility of using unmanned aerial vehicles (drones) to determine the shoreline of natural watercourses. According to the Water Law, the shoreline is defined by: the edge of the shore if it is visible, and in other cases it is the boundary of persistent grass growth, or the line, which is determined on the basis of the average water level of a period of at least 10 years. The study included an analysis of the possibility of determining the shore line in all of these cases, using aerial photos obtained from an unmanned aerial vehicle (drone) on a particular stretch of the river Narew. In order to determine the shoreline defined by the edge of the shore, a point cloud together with the necessary GIS tools were used to generate planes which then made it possible to determine that edge. Defining the shoreline using this method was done with an accuracy of ±0.21 m. The study shows that the best results for determining the shoreline were obtained using either the edge of the shore or the line, which is determined according to the average water level of a period of at least 10 years. Due to the very ambiguous course of the shoreline defined by the boundary of persistent grass growth, it would be advisable to eliminate this remove from the Water Law.
Celem pracy było określenie możliwości wykorzystania bezzałogowych statków latających (dronów) do ustalania linii brzegowej cieków naturalnych. Z ustawy „Prawo wodne” wynika, że granicę linii brzegu stanowią: krawędź brzegu, jeżeli jest wyraźna, a w pozostałych przypadkach granica stałego porastania traw, albo linia, którą ustala się według średniego stanu wody z okresu co najmniej 10 lat. Badaniami objęto możliwości określenia linii brzegu we wszystkich przypadkach, wykorzystując zdjęcia lotnicze wykonane z bezzałogowego statku latającego (drona) na określonym odcinku Narwi. W celu określenia linii brzegowej wyznaczonej przez krawędź brzegu wykorzystano chmurę punktów oraz narzędzia do wygenerowania płaszczyzn, z których wyznaczono tę krawędź. Uzyskano dokładność wyznaczenia tą metodą linii brzegowej, wynoszącą ±0,21 m. Z przeprowadzonych badań wynika, że najlepsze rezultaty uzyskano, wyznaczając linię brzegu, gdy linię tę stanowi krawędź brzegu, lub linię średniego stanu wody z okresu co najmniej 10 lat. Ze względu na bardzo niejednoznaczny przebieg granicy linii brzegu wyznaczonej jako linia stałego porastania traw, celowe byłoby wyeliminowanie tego kryterium z zapisu ustawy „Prawo wodne”.
Źródło:
Journal of Water and Land Development; 2017, 35; 259-264
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of the number of trees in the Bory Tucholskie National Park using crown delineation of the canopy height models derived from aerial photos matching and airborne laser scanning data
Określanie liczby drzew w Parku Narodowym Bory Tucholskie metodą segmentacji koron na modelach wysokościowych pochodzących z dopasowania zdjęć lotniczych oraz lotniczego skanownia laserowego
Autorzy:
Wężyk, P.
Hawryło, P.
Szostak, M.
Powiązania:
https://bibliotekanauki.pl/articles/130706.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
image segmentation
object classification
point clouds
airborne laser scanning
National Park
Bory Tucholskie
segmentacja obrazu
klasyfikacja obiektowa
chmury punktów
lotnicze skanowanie laserowe
Park Narodowy
Opis:
In recent years the term "precise forestry" has been used more and more often, referring to a modern and sustainable model of forest management. Functioning of such management of wood biomass resources is based, among others, on precisely defined and log-term monitored selected forest taxation parameters of single trees and whole forest stands based on modern geoinformation technologies, including Airborne Laser Scanning (ALS) and digital photogrammetry. The purpose of the work was the analysis of the usefulness of the CHM (Canopy Height Model) generated from the image-based point cloud or ALS technology to define the number of trees using the method of the segmentation of single Scots pine (Pinus sylvestris L.) crowns. The study was carried out in the Scots pine stands located in the Bory Tucholskie National Park (Poland). Due to the intentional lack of certain silviculture treatments, over the recent decades, these forest stands have been characterized by relatively high tree density, compared to managed forests. The CHM was generated from digital airborne photos (CIR composition; GSD 0.15 m) and on the other hand - from the ALS point clouds (4 points/m2 ; ISOK project). To generate point clouds from airborne photos using stereomatching method, the PhotoScan Professional (Agisoft) software was applied. The CHM coming from the Image-Based Point Cloud (CHM_IPC; GSD: 0.30 m) and ALS data (CHM_ALS; GSD: 0.75 m) were generated using FUSION (USDA Forest Service) software. The segmentation of tree crowns was carried out in eCognition Developer (TRIMBLE GeoSpatial) software. Apart from height models, also spectral information was used (so-called true CIR orthophotomaps; GSD: 0.3 and 0.75 m). To assess the accuracy of the obtained results, the ground truth data from 248 reference areas were used. The carried out analyses showed that in forest stands of younger age classes (< 120 years) better results were achieved applying the method of image matching (CHM_IPC), while in the case of older stands (> 120 years) the accuracy of the detection rate of tree crowns was the highest when CHM_ALS model was applied. The mean percentage error (defined by the number of trees, based on the detection of single pine crowns), calculated based on 248 ground truth areas was 0.89%, which shows a great potential of digital photogrammetry (IPC) and GEOBIA. In case of almost full nationwide cover in Poland of airborne digital images (present IPC models) and ALS point clouds (DTM and DSM), at almost 71% forest stands in the Polish State Forests National Forest Holding (PGL LP), one can assume wide application of geodata (available free of charge) in precise modelling of selected tree stand parameters all over Poland.
W ostatnich latach coraz częściej w odniesieniu do nowoczesnej i zrównoważonej gospodarki leśnej używa się terminu "precyzyjne leśnictwo". Funkcjonowanie takiego modelu zarządzania zasobami biomasy drzewnej opiera się m.in. na dokładnie określonych i monitorowanych cyklicznie wybranych parametrach taksacyjnych drzewostanów i pojedynczych drzew w oparciu o nowoczesne technologie geoinformacyjne, w tym lotnicze skanowanie laserowe (ang. ALS) oraz fotogrametrię cyfrową. Celem pracy była analiza przydatności Modelu Koron Drzew (ang. CHM) generowanego z chmur punktów pochodzących z automatycznego dopasowania cyfrowych zdjęć lotniczych (ang. Image-Based Point Cloud) lub z technologii ALS w celu określania liczby drzew metodą segmentacji pojedynczych koron sosen. Badania realizowano w drzewostanach sosnowych (Pinus sylvestis L.) na obszarze Parku Narodowego "Bory Tucholskie". Drzewostany te poprzez celowe zaniechanie w ostatnich dekadach pewnych zabiegów hodowlanych charakteryzowały się stosunkowo dużym zagęszczeniem drzew w porównaniu do drzewostanów gospodarczych. Model Koron Drzew wygenerowano w jednym wariancie ze zdjęć lotniczych CIR (GSD 0.15 m) a w drugim z chmur punktów ALS (4 pkt/m2 ; CODGiK ISOK). Do generowania chmur punktów ze zdjęć lotniczych metodą dopasowania zastosowano oprogramowanie Photoscan Professional (Agisoft). Modele Koron Drzew pochodzące z dopasowania zdjęć lotniczych (CHM_IPC; GSD: 0.30 m) oraz z danych ALS (CHM_ALS; GSD: 0.75 m) zostały wygenerowane w oprogramowania FUSION (USDA Forest Service). Segmentację koron prowadzono w oprogramowaniu eCognition Developer. Oprócz modeli wysokościowych wykorzystano także informację spektralną (tzw. prawdziwe ortofotomapy CIR; GSD: 0.3 i 0.75 m). Do oceny dokładności otrzymanych wyników wykorzystano dane pochodzące z 248 powierzchni referencyjnych. Przeprowadzona analiza wykazała, że w drzewostanach młodszych klas wieku (< 120 lat), lepsze wyniki można osiągnąć stosując metody dopasowania zdjęć (CHM_IPC) natomiast w drzewostanach starszych (> 120 lat) dokładność wykrywania koron drzew jest najwyższa przy stosowaniu wariantu CHM_ALS. Średni błąd procentowy określania liczby drzew w oparciu o detekcję pojedynczych koron sosen obliczony na podstawie 248 powierzchni referencyjnych wyniósł 0.89% co świadczy o ogromnym potencjale fotogrametrii cyfrowej (metod dopasowania zdjęć) oraz analizy obrazu (OBIA; Object-Based Image Analysis). W aspekcie niemal całkowitego pokrycia kraju danymi ALS oraz blisko 70% udziału drzewostanów sosnowych w Lasach Państwowych można założyć szerokie wykorzystanie tych nieodpłatnie dostępnych geodanych w celu zbudowania modelu precyzyjnego leśnictwa dla obszaru całego kraju.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2016, 28; 137-156
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multifraktalna analiza zobrazowań satelitarnych
Multifractal analysis of satellite images
Autorzy:
Wawrzaszek, A.
Krupiński, M.
Drzewiecki, W.
Aleksandrowicz, S.
Powiązania:
https://bibliotekanauki.pl/articles/130167.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
obraz satelitarny
obraz lotniczy
wymiar fraktalny
multifraktalność
klasyfikacja
satellite image
aerial image
fractal dimension
multifractality
classification
Opis:
Przedstawione prace badawcze dotyczyły oceny skuteczności stosowania opisu multifraktalnego jako narzędzia do wydobywania informacji z bardzo wysokorozdzielczych zobrazowań satelitarnych, prezentujących głównie obszary Polski. Przeanalizowano duże zestawy danych panchromatycznych, zarejestrowanych przez satelity WorldView-2 i EROS-A. Wyniki analiz potwierdziły wyższość multifraktali jako globalnych charakterystyk zobrazowań nad standardowym opisem fraktalnym, a także użyteczność stosowania parametrów multifraktalnych jako charakterystyk w klasyfikacji zdjęć satelitarnych przy użyciu klasyfikacyjnych drzew decyzyjnych. Porównano również cechy multifraktalne z szeroko stosowanymi parametrami teksturalnymi w kontekście skuteczności klasyfikacji zdjęć satelitarnych i przeanalizowano wpływ filtracji na wyznaczane charakterystyki multifraktalne, w szczególności w kontekście poprawy skuteczności klasyfikacji. Przeprowadzono również wstępne badania dotyczące możliwości wykorzystania fraktali w analizach lotniczych danych hiperspektralnych. Przeprowadzone analizy wykazały użyteczność multifraktali w wielu obszarach badań teledetekcyjnych, a wypracowana metodologia może być z powodzeniem dalej rozwijana i stosowana do bardziej ukierunkowanych zadań, takich jak analiza zmian lub ocena przydatności kanałów spektralnych.
Research presented in this paper is focused on the efficiency assessment of multifractal description as a tool for Image Information Mining. Large datasets of very high spatial resolution satellite images (WorldView-2 and EROS-A) have been analysed. The results have confirmed the superiority of multifractals as global image descriptors in comparison to monofractals. Moreover, their usefulness in image classification by using decision trees classifiers was confirmed, also in comparison with textural features. Filtration process preceding fractal and multifractal features estimations was also proved to improve classification results. Additionally, airborne hyperspectral data have been initially analysed. Fractal dimension shows high potential for the description of hyperspectral data. To summarise all conducted tests indicate the usefulness of multifractal formalism in various aspects of remote sensing. Prepared methodology can be further developed and used for more specific tasks, for example in change detection or in the description of hyperspectal data complexity.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 163-173
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena przydatności poziomu multifraktalności do opisu wysokorozdzielczych danych pozyskanych przez satelity Landsat
Evaluation of degree of multifractality for description of high resolution data acquired by Landsat satellites
Autorzy:
Wawrzaszek, A.
Walichnowska, M.
Krupiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/131070.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fraktal
mapa multifraktalnosci
analiza obrazu
klasyfikacja
zobrazowania satelitarne
fractal
multifractal map
image analysis
classification
satellite images
Opis:
W ramach pracy przeanalizowano 6 scen o trzydziestometrowej rozdzielczości pochodzące z satelitów Landsat 5, 7 i 8, zarejestrowane w sześciu zakresach długości fali i prezentujące obszar Warszawy. Stosując dwa algorytmy podziału dużych scen – sąsiadujący i pływający stworzono mapy multifraktalności. Przeprowadzona analiza pozwoliła ocenić, czy scena zarejestrowana w badanych zakresach wykazuje cechy multifraktalne oraz czy wybór rozmiaru podziału sceny w trakcie analiz ma istotny wpływ na uzyskane charakterystyki multifraktalne oraz ich błąd wyznaczenia. W ogólności pierwsza interpretacja przeprowadzonych analiz pokazała, że poziom multifraktalności stosowany dla danych o trzydziestometrowej rozdzielczości nie wykazuje bezpośredniego związku z formą pokrycia terenu. Należy przy tym jednak zaznaczyć, że rozważane dane nie zostały poddane wcześniejszemu przetworzeniu, co zgodnie z podjętą w pracy dyskusją, może stanowić jedną z metod polepszenia uzyskanych wyników.
In the frame of this work six satellite images (at six spectral bands) from Landsat 5, Landsat 7 and Landsat 8 have been analysed. For this purpose 30 meter resolution images showing the regions of Warsaw have been used. The conducted research allowed for verification if the whole scene presents multifractal features and if size of the division of the scene used during the analysis has a significant influence on the multifractal characteristic and error in their calculation. Initial interpretation of the obtained results showed, that the use of degree of multifractality determined for remote sensing data with the 30 meters resolution does not reveal direct relation with land cover classes. It should be noted, however, that the considered data have not been the subject of a previous processing, which according to the discussion performed in this work can be considered as one of the methods to achieve an improvement in results.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 175-184
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aparaturowe i metodologiczne aspekty ilościowej analizy mikrostruktury żeliwa
Quantitative analysis of cast iron microstructure in terms of the apparatus and methodology
Autorzy:
Warmuzek, M.
Boroń, Ł.
Tchórz, A.
Powiązania:
https://bibliotekanauki.pl/articles/391395.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Odlewnictwa
Tematy:
mikrostruktura
analiza obrazu
grafit
żeliwo
parametry stereologiczne
klasyfikacja grafitu
microstructure
image analysis
graphite
cast iron
stereological parameters
graphite classification
Opis:
W pracy porównano wyniki zastosowania różnych systemów obrazowania mikrostruktury (mikroskop świetlny oraz tomograf rentgenowski) oraz różnych systemów analizy obrazu do pomiaru wybranych parametrów stereologicznych i geometrycznych dla dwóch modeli morfologicznych, występujących w stopach odlewniczych, na przykładzie żeliwa z grafitem sferoidalnym i kratkowym. Wykazano statystycznie istotne różnice pomiędzy uzyskanymi wynikami pomiarów, spowodowane przede wszystkim jakością obrazu poddanego analizie oraz lokalnymi cechami geometrycznymi analizowanych obiektów. Porównano wyniki klasyfikacji wydzieleń grafitu według klas wielkości przyjętych w obowiązującej normie PN-EN ISO 945-1, przeprowadzonej na podstawie różnych procedur obrazowania.
In this work the results of the application of different imaging techniques and image analysis systems for measurements of chosen either stereological parameters or geometrical features for some of morphology models occurring in the cast alloys, especially taking into account cast iron with either spheroidal or vermicular graphite have been compared and interpreted. The statistical important difference of the obtained results have been stated and recognized as caused first of all by quality of analyzed images and local geometry features of the analyzed objects. The results of the graphite particles classification according to the size class in the actual standard PN-EN ISO 945-1, using different imaging and analysis procedures.
Źródło:
Prace Instytutu Odlewnictwa; 2011, 51, 3; 59-87
1899-2439
Pojawia się w:
Prace Instytutu Odlewnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of high resolution satellite images using improved U-Net
Autorzy:
Wang, Yong
Zhang, Dongfang
Dai, Guangming
Powiązania:
https://bibliotekanauki.pl/articles/331235.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
satellite image classification
deep learning
U-net
spatial pyramid pooling
zdjęcia satelitarne
uczenie głębokie
Opis:
Satellite image classification is essential for many socio-economic and environmental applications of geographic information systems, including urban and regional planning, conservation and management of natural resources, etc. In this paper, we propose a deep learning architecture to perform the pixel-level understanding of high spatial resolution satellite images and apply it to image classification tasks. Specifically, we augment the spatial pyramid pooling module with image-level features encoding the global context, and integrate it into the U-Net structure. The proposed model solves the problem consisting in the fact that U-Net tends to lose object boundaries after multiple pooling operations. In our experiments, two public datasets are used to assess the performance of the proposed model. Comparison with the results from the published algorithms demonstrates the effectiveness of our approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 399-413
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-Destructive Quantitative Analysis of Azodicarbonamide Additives in Wheat Flour by High-Throughput Raman Imaging
Autorzy:
Wang, Xiaobin
Zhao, Chunjiang
Powiązania:
https://bibliotekanauki.pl/articles/2019170.pdf
Data publikacji:
2021-12-01
Wydawca:
Instytut Rozrodu Zwierząt i Badań Żywności Polskiej Akademii Nauk w Olsztynie
Tematy:
azodicarbonamide
wheat flour
Raman imaging
image classification
quantitative model
Opis:
Azodicarbonamide (ADA) additives are limited or prohibited from being added to wheat flour by various countries because they may produce carcinogenic semicarbazide in humid and hot conditions. This study aimed to realize the non-destructive detection of ADA additives in wheat flour using high-throughput Raman imaging and establish a quantitative analysis model. Raman images of pure wheat flour, pure ADA, and wheat flour-ADA mixed samples were collected respectively, and the average Raman spectra of each sample were calculated. A partial least squares (PLS) model was established by using the linear combination spectra of pure wheat flour and pure ADA and the average Raman spectra of mixed samples. The regression coefficients of the PLS model were used to reconstruct the 3D Raman images of mixed samples into 2D grayscale images. Threshold segmentation was used to classify wheat flour pixels and ADA pixels in grayscale images, and a quantitative analysis model was established based on the number of ADA pixels. The results showed that the minimum detectable content of ADA in wheat flour was 100 mg/kg. There was a good linear relationship between the ADA content in the mixed sample and the number of pixels classified as ADA in the grayscale image in the range of 100 – 10,000 mg/kg, and the correlation coefficient was 0.9858. This study indicated that the combination of PLS regression coefficients with threshold segmentation had provided a non-destructive method for quantitative detection of ADA in Raman images of wheat flour-ADA mixed samples.
Źródło:
Polish Journal of Food and Nutrition Sciences; 2021, 71, 4; 403-410
1230-0322
2083-6007
Pojawia się w:
Polish Journal of Food and Nutrition Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies