- Tytuł:
-
The use of neural image analysis in the identification of information encoded in a graphical form
Wykorzystanie neuronowej analizy obrazów w identyfikacji informacji zakodowanej w formie graficznej - Autorzy:
-
Koszela, K.
Boniecki, P.
Kuzimska, T. - Powiązania:
- https://bibliotekanauki.pl/articles/956540.pdf
- Data publikacji:
- 2015
- Wydawca:
- Polskie Towarzystwo Inżynierii Rolniczej
- Tematy:
-
identification of class oocytes
quality classification
computer image analysis
image analysis
artificial neural networks
identyfikacja klas oocytów
klasyfikacja jakościowa
analiza obrazu
sztuczne sieci neuronowe - Opis:
-
Numerous scientific and research centres are searching for solutions concerning the problem of quality classification of animal oocytes. Conducting such studies is purposeful, particularly in the context of constant attempts to improve the quality of food products, which depends on the breeding value of livestock. Therefore, searching for methods of stimulation of proper development of a larger number of animal oocytes, particularly in extracorporeal conditions, gains special importance. An increasing interest in assisted reproduction techniques resulted in searching for new, increasingly effective methods of quality assessment of mammalian gametes and embryos. The expected progress in the production of animal embryos in vitro is largely dependent on proper classification of obtained oocytes. The aim of this work was to develop a non-invasive method for the quality assessment of oocytes, performed on the basis of graphic information encoded in the form of monochromatic digital images obtained via microscopy techniques. The classification process was conducted based on the information presented in the form of microphotography pictures of domestic pig oocytes, using advanced methods of neural image analysis.
Rozwiązaniem problemu klasyfikacji jakościowej oocytów zwierzęcych zajmuje się wiele różnych ośrodków naukowo-badawczych. Celowość prowadzenia takich badań jest uzasadniona szczególnie w kontekście ciągłego dążenia do podnoszenia jakości produktów żywnościowych, która jest pochodną wartości hodowlanej zwierząt gospodarskich. W związku z tym, istotnego znaczenia nabierają poszukiwania metod prowadzących do stymulowania prawidłowego rozwoju większej liczby zapładnianych oocytów zwierzęcych, zwłaszcza realizowanego w warunkach pozaustrojowych. Rosnące zainteresowanie technikami wspomaganego rozrodu stało się przyczyną poszukiwania nowych, coraz bardziej efektywnych metod oceny jakościowej gamet oraz zarodków ssaków. Oczekiwany postęp w produkcji zarodków in vitro zwierząt uzależniony jest w istocie od poprawnej klasyfikacji pozyskiwanych oocytów. Celem pracy było opracowanie bezinwazyjnej metody oceny jakościowej oocytów dokonywanej w oparciu o informację graficzną zakodowana w postaci monochromatycznych obrazów cyfrowych pozyskanych metodą mikroskopową. Proces klasyfikacji zrealizowano w oparciu o informację prezentowaną w formie zdjęć mikrofotograficznych oocytów świni domowej, wykorzystując w tym celu nowoczesne metody neuronowej analizy obrazu. - Źródło:
-
Agricultural Engineering; 2015, 19, 3; 25-35
2083-1587 - Pojawia się w:
- Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki