Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hybrid biomaterials" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Biocompatibility of hybrid fibrous materials basing on poly-L/DL-lactide
Autorzy:
Stodolak, E.
Ścisłowska-Czarnecka, A.
Błażewicz, M.
Bogun, M.
Mikolajczyk, T.
Menaszek, E.
Powiązania:
https://bibliotekanauki.pl/articles/286193.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
hybrid biomaterials
composites
nanocomposite materials
Opis:
Hybrid biomaterials due to their unique structure may become an alternative for many popular composite and nanocomposite materials. Multilevel modification of their matrix manifesting itself in the presence of particles of different sizes i.e., micrometric, submicrometric and nanometric together with the variety of shapes of a modyfing phase (nanometric fibres, submicron particles, coated nanoparticles) and its different chemical character make the hybrid materials similar to natural tissue. Bone tissue structure is particulary close to this model in which collagen fibres and hydroxyapatite particles and nanoparticles have not only different form but first of all they play different role in the tissue which depends on their chemical nature. In the biomedical engineering syntetic hybride biomaterials are usually produced using resorbable and degradable polymer matrices and inorganic filers (ceramic bioactive particles; HAp, TCP, SiO2) or organic filers (collagen, polysaccharides e.g. alginate fibres). The main function of the modyfing phase is inprovement of the polymer matrix leading to bioactive, stronger material showing high biofunctionality. Production of hybrid materials is based mainly on experimental works, which is related to the presence in their matrix few phases with different properties which may interact. Hybrid materials do not follow the rule of mixtures thus it is difficult to predict behaviour of a material in which co-exis different chemical and phisical phases. In the work hybrid composite foils were produced in which modyfing phase consisted in; nanocomposite calcium alginate fibres modyfied with ceramic nanoparticles; HAp (CAH fibres), TCP (CAT fibres), SiO2 (CAS fibres) and MMT (CAM fibres). Short fibres were subjected to additional size reduction in vibration ball mill resultiong in submicron and nanometric phases. Size of the particels after grinding was determined by screening analysis and DLS method (for particels smaller than 500 nm). It was observed than the population of short fibres consist in three fractions i.e.; micrometric (~2μm, 50 wt.%), submicrometric (500–800 nm, 40 wt.%) and nanometric ( below 500 nm, 10 wt.%). The fibres and products of their grinding were homogenised in P(L/ DL)LA polymer solution (poly-L/DL-lactide, Purarorb 80, Purac Germany). A hybride material in the form of thin foils containing 2 wt.% of a modyfing phase were subjected to durability tests consisting in incubation in distilled water (30 days/37C). Monitoring of the medium pH and conductivity did not show changes related to harmful products of their decomposition. Osteoblast-like cells from MG-63 line contacted with the surface of the materials showed high viability (MMT test) comparable with the reference material (TCPS). High degree of adherence of the cells to the materal surface (CV test) testifies of potential abilities of the material stimulating proliferation of bone tissue cells. The highes rate of dynamic growth (increase of the cells number after 7 days of incubation) was observed for the material which was modified with CAS fibres and products of their grinding. The performed investigations have a preliminary character. Their results testify for potential osteoconductive or osteoinductive abilities of hybride materials basing on P(L/DL)LA and alginate nanocomposite fibres.
Źródło:
Engineering of Biomaterials; 2010, 13, no. 99-101; 110
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bioactive photocross-linkable hybrid materials for tissue engineering applications
Autorzy:
Lewandowska-Łańcucka, J.
Mystek, K.
Mignon, A.
Vlierberghe, S. van
Łatkiewicz, A.
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/285159.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
novel biomaterials
hybrid materials
bone tissue engineering
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 30
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania odporności na zużycie warstw bioceramicznych na tytanie wytwarzanych metodą hybrydową
The study of wear resistance of bio-ceramic layers on titanium produced by hybrid method
Autorzy:
Surowska, B.
Bieniaś, J.
Wierzchoń, T.
Rokita, M.
Powiązania:
https://bibliotekanauki.pl/articles/284319.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biomateriały
warstwy bioceramiczne
metoda hybrydowa
biomaterials
bio-ceramic layers
hybrid method
Źródło:
Engineering of Biomaterials; 2008, 11, no. 77-80; 39-40
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bioszkła i organiczno-nieorganiczne kompozyty dla inżynierii tkankowej kości
Bioglasses and organic-inorganic composites for bone tissue engineering
Autorzy:
John, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/172492.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
biomateriały
bioszkło
organiczno-nieorganiczne hybrydy
hydroksyapatyt
implanty kości
in vitro
biomaterials
bioglasses
organic-inorganic hybrid
hydroxyapatite
bone implants
Opis:
The most demanded biomaterials for bone tissue engineering could be classified in two main sol-gel derived groups: bioglasses and organic-inorganic composites. The first of these include bioactive ceramics such as calcium phosphates (Tab. 2) [1], glasses and glass ceramics [2], and so-called inert ceramics (Tab. 1) such as Al2O3, zirconium and titanium dioxide, and carbon-based materials [3, 4]. Second-group of compounds constitute bioactive organic-inorganic hybrids, generally based on organic matrix and various inorganic dopants. Biomaterials in contact with human plasma and bone stem cells form, on their surface, hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and its derivatives (Tab. 2). HAp-layer initiates bone growth and reconstruction of treated fragment (Fig. 2). These materials, due to the high degree of biocompability are considered as the most valuable compounds for bone surgery [5]. Extremely rapid development of biomaterials used in medicine caused the production of implants with different properties (Scheme 1). The real revolution and technological progress have brought biomimetic composites that mimic naturally occurring solutions in living organisms. The role of such implants is not only replacing the damaged parts of body, but – due to the appropriate morphology and composition – stimulating the growth of living cells (Fig. 3) and final bone regeneration. This article is devoted to this type of biomaterials proposed for bone tissue engineering.
Źródło:
Wiadomości Chemiczne; 2012, 66, 1-2; 21-39
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bioceramiczne warstwy kompozytowe wytwarzane metodą hybrydową na stopie Ti6Al4V
Bio-ceramic composite layers on Ti6Al4V alloy produced by hybrid method
Autorzy:
Surowska, B.
Bieniaś, J.
Wierzchoń, T.
Ossowski, M.
Rokita, M.
Powiązania:
https://bibliotekanauki.pl/articles/284804.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
metoda hybrydowa
stop Ti6Al4V
bioceramiczne warstwy kompozytowe
biomateriały tytanowe
hybrid method
Ti6Al4V alloy
titanium biomaterials
bio-ceramic composite layers
Źródło:
Engineering of Biomaterials; 2008, 11, 73; 15-17
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies