Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "holonic manufacturing systems" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Intelligent Visual Quality Control System Based on Convolutional Neural Networks for Holonic Shop Floor Control of Industry 4.0 Manufacturing Systems
Autorzy:
Oborski, Przemysław
Wysocki, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/2181746.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
quality control
manufacturing systems
Industry 4.0
artificial intelligence
convolutional neural networks
deep learning
process monitoring
holonic shop floor control
integrated IT systems
Opis:
The article presents research on industrial quality control system based on AI deep learning method. They are a part of larger project focusing on development of Holonic Shop Floor Control System for integration of machines, machine operators and manufacturing process monitoring with information flow in whole production process according to Industry 4.0 requirements. A system connecting together machine operators, machine control, process and machine monitoring with companywide IT systems is developed. It is an answer on manufacture of airplane industry requirements. The main aim of the system is full automation of information flow between a management level and manufacturing process level. Intelligent, flexible quality control system allowing for active manufacturing optimization on the base of achieved results as well as a historical data collection for further Big Data analysis is the main aim of the current research. During research number of selected AI algorithms were tested for assessing their suitability for performing tasks identified in real manufacturing environment. As a result of the conducted analyzes, Convolutional Neural Networks were selected for further study. Number of built Convolutional Neural Networks algorithms were tested using sets of data and photos from the production line. A further step of research will be focused on testing a system in real manufacturing process for able possible construct a fully functional quality control system based on the use of Convolutional Neural Networks.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 2; 89--98
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of holonic manufacturing systems
Autorzy:
Van Brussel, H.
Valckenaers, P.
Powiązania:
https://bibliotekanauki.pl/articles/99591.pdf
Data publikacji:
2017
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
holonic manufacturing systems
integration
control
reference architecture
virtual execution
Opis:
The introduction of CIM (Computer Integrated Manufacturing) systems in the 1980s, aiming at integrating automatic workstations into fully automated factories, was not successful. The root causes of this failure were that the subsystems to be integrated were not suitably designed for easy integration into a larger system. This situation stimulated the authors to embark on a research programme on ‘design for the unexpected’. It defined how subsystems have to be designed so that integration into larger systems becomes easier and how such an integrated system can be controlled so that it can cope with change and disturbances. In the paper, the design principles and salient features of holonic manufacturing systems (HMS) are outlined. The PROSA reference architecture, defining the basic structure of any HMS, is described. It is further explained how coordination and control of the HMS is achieved by a holonic manufacturing execution system (HMES), based on the combination of the PROSA reference architecture and a biologically inspired Delegate Multiagent System (DMAS). Finally, the power and universality of the PROSA/DMAS system is demonstrated by some case studies from manufacturing, robotics and open air engineering.
Źródło:
Journal of Machine Engineering; 2017, 17, 3; 5-23
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies