Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "highly connected manifolds" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On the generalized Massey–Rolfsen invariant for link maps
Autorzy:
Skopenkov, A.
Powiązania:
https://bibliotekanauki.pl/articles/1205018.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
deleted product
Massey-Rolfsen invariant
link maps
link homotopy
stable homotopy group
double suspension
codimension two
highly connected manifolds
Opis:
For $K = K_1⊔...⊔K_s$ and a link map $f:K → ℝ^m$ let $K^∼ = ⊔_{i < j} K_i × K_j$, define a map $f^∼ : K^∼ → S^{m - 1}$ by $f^∼(x, y) = (fx - fy)/|fx - fy|$ and a (generalized) Massey-Rolfsen invariant $α(f) ∈ π^{m - 1}(K)$ to be the homotopy class of $f^∼$. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps $f:K → ℝ^m$ up to link concordance to $π^{m - 1}(K^∼)$. If $K_1,...,K_s$ are closed highly homologically connected manifolds of dimension $p_1,...,p_s$ (in particular, homology spheres), then $π^{m-1}(K^∼)≅⊕_{i < j} π^S_{p_i + p_j - m + 1}$.
Źródło:
Fundamenta Mathematicae; 2000, 165, 1; 1-15
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies