Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hierarchical time series" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region — A Critical Overview
Autorzy:
Kosiorowski, Daniel
Mielczarek, Dominik
Rydlewski, Jerzy P.
Powiązania:
https://bibliotekanauki.pl/articles/2076274.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
day and night air pollution
functional data analysis
functionalmedian
hierarchical time series
reconciliation of forecasts
Opis:
In economics we often face a system which intrinsically imposes a structure of hierarchy of its components, i.e., in modeling trade accounts related to foreign exchange or in optimization of regional air protection policy. A problem of reconciliation of forecasts obtained on different levels of hierarchy has been addressed in the statistical and econometric literature many times and concerns bringing together forecasts obtained independently at different levels of hierarchy. This paper deals with this issue with regard to a hierarchical functional time series. We present and critically discuss a state of art and indicate opportunities of an application of these methods to a certain environment protection problem. We critically compare the best predictor known from the literature with our own original proposal. Within the paper we study a macromodel describing the day and night air pollution in Silesia region divided into five subregions.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2018, 1; 53-73
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele hierarchiczne w prognozowaniu zmiennych o wysokiej częstotliwości obserwowania w warunkach braku pełnej informacji
Hierarchical models in forecasting of the high-frequency variables in the conditions of lack of full information
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/425235.pdf
Data publikacji:
2014
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
high-frequency data
hierarchical models
incomplete time series
Opis:
The paper presents a procedure of application of regular hierarchical models in forecasting missing data in high-frequency time series with cyclical fluctuations. Annual, weekly and daily cycles of seasonal fluctuation have additive character. Separately regular hierarchical models have been built for even length cycles.Theoretical considerations are illustrated with an empirical example.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2014, 4(46); 72-84
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence
Autorzy:
Li, C.
Chiang, T. W.
Powiązania:
https://bibliotekanauki.pl/articles/331280.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
system neuronowo-rozmyty
optymalizacja rojem cząstek
szereg czasowy
complex fuzzy set
complex neuro fuzzy system
hierarchical multi swarm
particle swarm optimization (PSO)
recursive least squares estimator
time series forecasting
Opis:
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed approach, whose experimental results outperform those of other methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 787-800
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies