Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hierarchic genetic strategy" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On the computational cost and complexity of stochastic inverse solvers
Autorzy:
Faliszewski, P.
Smołka, M.
Schaefer, R.
Paszyński, M.
Powiązania:
https://bibliotekanauki.pl/articles/305383.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
hierarchic genetic strategy
inverse problem
hybrid method
Opis:
The goal of this paper is to provide a starting point for investigations into a mainly underdeveloped area of research regarding the computational cost analysis of complex stochastic strategies for solving parametric inverse problems. This area has two main components: solving global optimization problems and solving forward problems (to evaluate the misfit function that we try to minimize). For the first component, we pay particular attention to genetic algorithms with heuristics and to multi-deme algorithms that can be modeled as ergodic Markov chains. We recall a simple method for evaluating the first hitting time for the single-deme algorithm and we extend it to the case of HGS, a multi-deme hierarchic strategy. We focus on the case in which at least the demes in the leaves are well tuned. Finally, we also express the problems of finding local and global optima in terms of a classic complexity theory. We formulate the natural result that finding a local optimum of a function is an NP-complete task, and we argue that finding a global optimum is a much harder, DP-complete, task. Furthermore, we argue that finding all global optima is, possibly, even harder (#P-hard) task. Regarding the second component of solving parametric inverse problems (i.e., regarding the forward problem solvers), we discuss the computational cost of hp-adaptive Finite Element solvers and their rates of convergence with respect to the increasing number of degrees of freedom. The presented results provide a useful taxonomy of problems and methods of studying the computational cost and complexity of various strategies for solving inverse parametric problems. Yet, we stress that our goal was not to deliver detailed evaluations for particular algorithms applied to particular inverse problems, but rather to try to identify possible ways of obtaining such results.
Źródło:
Computer Science; 2016, 17 (2); 225-264
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid algorithm for solving inverse problems in elasticity
Autorzy:
Barabasz, B.
Gajda-Zagórska, E.
Migórski, S.
Paszyński, M.
Schaefer, R.
Smołka, M.
Powiązania:
https://bibliotekanauki.pl/articles/331427.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
inverse problem
hierarchic genetic strategy
hybrid optimization
automatic hp adaptive finite element method
zagadnienie odwrotne
strategia genetyczna
optymalizacja hybrydowa
metoda elementów skończonych
Opis:
The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 4; 865-886
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies