Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hidden Markov models (HMM's)" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Analytical investigation of congestion -avoidance strategies in closed-type queuing models of computer networks with priority scheduling
Autorzy:
Oniszczuk, W.
Powiązania:
https://bibliotekanauki.pl/articles/1933179.pdf
Data publikacji:
2007
Wydawca:
Politechnika Gdańska
Tematy:
pre-emptive-resume queuing model
mean value analysis (MVA)
congestion problem
call admission con-trol (CAC)
hidden Markov models (HMM's)
Opis:
A new approach is presented to modeling intelligent admission control and congestion avoiding mechanism, without rejecting new requests, embedded into a priority closed computer network. Most Call Admission Control (CAC) algorithms treat every request uniformly and hence optimize network performance by maximizing the number of admitted and served requests. In practice, requests have various levels of importance to the network, for example priority classes. Here, the investigated closed network with priority scheduling has been reduced to two service centers, which allows for decomposition of a larger network into a chain of individual queues, where each queue can be studied in isolation. A new algorithm (approach) of this special type of closed priority queuing systems is presented, including a node consisting of several priority sources generating tasks, designated as an Infinite Server (IS), and a service centre with a single service line. This model type is frequently described as a finite source, pre-emptive-resume priority queue (with general distribution of service time). The pre-emptive service discipline allows a task of lower priority to be returned to the head of a queue when a new task of higher priority arrives. A mathematical model of provisioning and admission control mechanism is also described. The idea behind this mechanism has been derived from the Hidden Markov Model (HMM) theory. It is crucial in the CAC process that the network manager obtains correct information about the traffic characteristics declared by the user. Otherwise, the quality of service (QoS) may be dramatically reduced by accepting tasks based on erroneous traffic descriptors. Numerical results illustrate the strategy's effectiveness in avoiding congestion problems.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2007, 11, 3; 237-252
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selection of parameters of HMM
Dobór parametrów HMM
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/156099.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
przetwarzanie obrazów
ukryte modele Markowa
UMM
image processing
hidden Markov models
HMM
Opis:
Hidden Markov models are widely applied in data classification. They are used in many areas. The choice of parameters of HMM is very important because of efficiency of whole identification system. Individual parameters should be matched individually for each system in the experiment way.
Ukryte modele Markowa (ang. Hidden Markov Models - HMM) są szeroko stosowane do klasyfikacji danych w wielu dziedzinach, np. w biometryce do rozpoznawania twarzy lub głosu, rozpoznawania obrazów i dźwięku. Pozwala to na budowanie skutecznych systemów kontroli dostępu do zasobów oraz systemów identyfikacji/autoryzacji osób. Każde z tych zastosowań wymaga specyficznego podejścia do problemu i odpowiedniego zaprojektowania HMM. Dobór Parametrów HMM jest bardzo ważny ze względu za skuteczność systemu identyfikacji. Poszczególne parametry powinny być dobierane indywidualnie dla każdego systemu w sposób eksperymentalny, a badania powinny być przeprowadzone na reprezentatywnej liczbie wzorców. Najważniejszym problemem w projektowaniu systemów opartych o HMM jest wybór architektury modelu, czyli topologii oraz liczby stanów i obserwacji. Wpływ na te parametry ma złożoność i zróżnicowanie danych- sygnałów wejściowych. W przypadku topologii do dyspozycji mamy modele ergodyczne lub left-right. Natomiast przy doborze liczby stanów i obserwacji uwzględniamy typ sygnału wejściowego. Im bardziej złożony i różnorodny, tym te wartości powinny być większe. Należy jednak pamiętać, że im więcej stanów i obserwacji wybierzemy, tym czas estymacji parametrów i czas testowania wydłuży się wykładniczo. Ponadto istnieje granica, powyżej której system nie będzie wykazywał większej skuteczności.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 10, 10; 844-846
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies