Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hidden Markov model (HMM)" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Diagnosis of incipient faults in nonlinear analog circuits
Autorzy:
Deng, Y.
Shi, Y.
Zhang, W.
Powiązania:
https://bibliotekanauki.pl/articles/220611.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear circuits
fault diagnosis
Volterra series
fractional correlation
hidden Markov model (HMM)
Opis:
Considering the problem to diagnose incipient faults in nonlinear analog circuits, a novel approach based on fractional correlation is proposed and the application of the subband Volterra series is used in this paper. Firstly, the subband Volterra series is calculated from the input and output sequences of the circuit under test (CUT). Then the fractional correlation functions between the fault-free case and the incipient faulty cases of the CUT are derived. Using the feature vectors extracted from the fractional correlation functions, the hidden Markov model (HMM) is trained. Finally, the well-trained HMM is used to accomplish the incipient fault diagnosis. The simulations illustrate the proposed method and show its effectiveness in the incipient fault recognition capability.
Źródło:
Metrology and Measurement Systems; 2012, 19, 2; 203-218
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa
Application of time sequences clustering methods in the speech recognition based on hidden Markov models
Autorzy:
Pałys, T.
Powiązania:
https://bibliotekanauki.pl/articles/273384.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
HMM
ukryte modele Markowa
estymacja
rozpoznawanie mowy
hidden Markov model
estimation
speech recognition
Opis:
Artykuł dotyczy problemu tworzenia ukrytych modeli Markowa na podstawie zarejestrowanych wypowiedzi. Kluczowym problemem jest tu wyznaczenie zbioru stanów modelu Markowa. Przyjęto, że stany modelu są określone przez skupienia obserwacji. Skupienia te można uzyskać drogą grupowania sekwencji obserwacji sygnału mowy.
A problem of hidden Markov models formation on the basis of recorded speech is considered in this paper. The key issue is the designation of a Markov model set. The assumption is that each HMM state is associated with clusters of observations. The clusters may be obtained by gathering of observations sequences for a speech signal.
Źródło:
Biuletyn Instytutu Automatyki i Robotyki; 2006, R. 12, nr 23, 23; 113-127
1427-3578
Pojawia się w:
Biuletyn Instytutu Automatyki i Robotyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Time-domain Windowing on Isolated Speech Recognition System Performance
Autorzy:
Ananthakrishna, Thalengala
Anitha, H.
Girisha, T.
Powiązania:
https://bibliotekanauki.pl/articles/2055228.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hidden Markov model
HMM
isolated speech recognition system
ISR
Kannada language
mono-phone model
Mel frequency cepstral coefficients
MFCC
Opis:
Speech recognition system extract the textual data from the speech signal. The research in speech recognition domain is challenging due to the large variabilities involved with the speech signal. Variety of signal processing and machine learning techniques have been explored to achieve better recognition accuracy. Speech is highly non-stationary in nature and therefore analysis is carried out by considering short time-domain window or frame. In the speech recognition task, cepstral (Mel frequency cepstral coefficients (MFCC)) features are commonly used and are extracted for short time-frame. The effectiveness of features depend upon duration of the time-window chosen. The present study is aimed at investigation of optimal time-window duration for extraction of cepstral features in the context of speech recognition task. A speaker independent speech recognition system for the Kannada language has been considered for the analysis. In the current work, speech utterances of Kannada news corpus recorded from different speakers have been used to create speech database. The hidden Markov tool kit (HTK) has been used to implement the speech recognition system. The MFCC along with their first and second derivative coefficients are considered as feature vectors. Pronunciation dictionary required for the study has been built manually for mono-phone system. Experiments have been carried out and results have been analyzed for different time-window lengths. The overlapping Hamming window has been considered in this study. The best average word recognition accuracy of 61.58% has been obtained for a window length of 110 msec duration. This recognition accuracy is comparable with the similar work found in literature. The experiments have shown that best word recognition performance can be achieved by tuning the window length to its optimum value.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 161--166
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An SFA-HMM performance evaluation method using state difference optimization for running gear systems in high-speed trains
Autorzy:
Cheng, Chao
Wang, Meng
Wang, Jiuhe
Shao, Junjie
Chen, Hongtian
Powiązania:
https://bibliotekanauki.pl/articles/2172116.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
slow feature analysis
SFA
performance evaluation
hidden Markov model
HMM
running gear system
analiza cech
ocena efektywności
ukryty model Markowa
układ biegowy
Opis:
The evaluation of system performance plays an increasingly important role in the reliability analysis of cyber-physical systems. Factors of external instability affect the evaluation results in complex systems. Taking the running gear in high-speed trains as an example, its complex operating environment is the most critical factor affecting the performance evaluation design. In order to optimize the evaluation while improving accuracy, this paper develops a performance evaluation method based on slow feature analysis and a hidden Markov model (SFA-HMM). The utilization of SFA can screen out the slowest features as HMM inputs, based on which a new HMM is established for performance evaluation of running gear systems. In addition to directly classical performance evaluation for running gear systems of high-speed trains, the slow feature statistic is proposed to detect the difference in the system state through test data, and then eliminate the error evaluation of the HMM in the stable state. In addition, indicator planning and status classification of the data are performed through historical information and expert knowledge. Finally, a case study of the running gear system in high-speed trains is discussed. After comparison, the result shows that the proposed method can enhance evaluation performance.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 3; 389--402
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical investigation of congestion -avoidance strategies in closed-type queuing models of computer networks with priority scheduling
Autorzy:
Oniszczuk, W.
Powiązania:
https://bibliotekanauki.pl/articles/1933179.pdf
Data publikacji:
2007
Wydawca:
Politechnika Gdańska
Tematy:
pre-emptive-resume queuing model
mean value analysis (MVA)
congestion problem
call admission con-trol (CAC)
hidden Markov models (HMM's)
Opis:
A new approach is presented to modeling intelligent admission control and congestion avoiding mechanism, without rejecting new requests, embedded into a priority closed computer network. Most Call Admission Control (CAC) algorithms treat every request uniformly and hence optimize network performance by maximizing the number of admitted and served requests. In practice, requests have various levels of importance to the network, for example priority classes. Here, the investigated closed network with priority scheduling has been reduced to two service centers, which allows for decomposition of a larger network into a chain of individual queues, where each queue can be studied in isolation. A new algorithm (approach) of this special type of closed priority queuing systems is presented, including a node consisting of several priority sources generating tasks, designated as an Infinite Server (IS), and a service centre with a single service line. This model type is frequently described as a finite source, pre-emptive-resume priority queue (with general distribution of service time). The pre-emptive service discipline allows a task of lower priority to be returned to the head of a queue when a new task of higher priority arrives. A mathematical model of provisioning and admission control mechanism is also described. The idea behind this mechanism has been derived from the Hidden Markov Model (HMM) theory. It is crucial in the CAC process that the network manager obtains correct information about the traffic characteristics declared by the user. Otherwise, the quality of service (QoS) may be dramatically reduced by accepting tasks based on erroneous traffic descriptors. Numerical results illustrate the strategy's effectiveness in avoiding congestion problems.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2007, 11, 3; 237-252
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies