Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hazard curve" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/1950802.pdf
Data publikacji:
2022-02-05
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motionprediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 97-185
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Appendices
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035851.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 166-182
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Part I Theoretical background
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035834.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 97-137
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Part II Methodology
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035843.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 137-153
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Part III Results and Discussion
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035849.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 153-166
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimating the probability of leaving unemployment for older people in Poland using survival models with censored data
Autorzy:
Grzenda, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/20311945.pdf
Data publikacji:
2023-06-13
Wydawca:
Główny Urząd Statystyczny
Tematy:
employment
older workers
proportional hazard model
time-dependent ROC curve
Opis:
Current demographic changes require greater participation of people aged 50 or older in the labour market. Previous research shows that the chances of returning to employment decrease with the length of the unemployment period. In the case of older people who have not reached the statutory retirement age, these chances also depend on the time they have left to retirement. Our study aims to assess the probability of leaving unemployment for people aged 50-71 based on their characteristics and the length of the unemployment period. We use data from the Labour Force Survey for 2019–2020. The key factors determining employment status are identified using the proportional hazard model. We take these factors into account and use the direct adjusted survival curve to show how the probability of returning to work in Poland changes as people age. Due to the fact that not many people take up employment around their retirement age, an in-depth evaluation of the accuracy of predictions obtained via the models is crucial to assess the results. Hence, in this paper, a time-dependent ROC curve is used. Our results indicate that the key factor that influences the return to work after an unemployment period in the case of older people in Poland is whether they reached the age of 60. Other factors that proved important in this context are the sex and the education level of older people.
Źródło:
Statistics in Transition new series; 2023, 24, 3; 241-256
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measuring and Explaining Income Inequalities in Poland: an Estimation of Lorenz Curves using Hazard Function Approach
Autorzy:
Landmesser, J.
Orłowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/1029578.pdf
Data publikacji:
2018-06
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
income inequalities
hazard function
Lorenz curve
Opis:
In this study we compare the income distributions for men and women in Poland in 2014. To examine the differences in the entire range of income values we utilize the hazard function approach. A flexible hazard-function based estimator in the presence of covariates (education, age, etc.) is used to construct conditional density and cumulative distribution functions. Then, we decompose the differences between two distributions using the counterfactual distribution. We estimate also the Lorenz curves for incomes and decompose the differences between the values of the Gini coefficients.
Źródło:
Acta Physica Polonica A; 2018, 133, 6; 1445-1449
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies