Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "grupowanie rozmyte" wg kryterium: Temat


Wyświetlanie 1-18 z 18
Tytuł:
Podsumowania lingwistyczne z grupowaniem rozmytym
Linguistic summaries with fuzzy clustering
Autorzy:
Smolińska, M. K.
Sosnowski, Z. A.
Powiązania:
https://bibliotekanauki.pl/articles/341071.pdf
Data publikacji:
2007
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
podsumowania lingwistyczne
grupowanie rozmyte
linguistic summaries
fuzzy clustering
Opis:
W pracy przedstawiono zastosowanie podsumowania lingwistycznego jako predykatu rozmytego do wyznaczania obiektów z typową wartością atrybutu lub zbioru atrybutów. W rozmytym algorytmie grupującym wykorzystana jest populacja z wyznaczoną ze względu na dany atrybut typowością obiektów. Wyniki działania tego algorytmu oraz jego zmodyfikowanej postaci zostały przedstawione na przykładzie populacji, której obiektami są piksele obrazu.
This paper presents linguistic summary as a fuzzy predicate, which is used to find, objects with typical values of an attribute or a set of attributes. In the fuzzy clustering algorithm we use population with given typicality of objects for selected attribute. We present the results of this algorithm and its modification basing on an example with population of pixels in image.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2007, 2; 141-154
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie sieci społecznych z wykorzystaniem algorytmu grupowania rozmytego
Social Networks Analysis using Fuzzy Clustering Algorithm
Autorzy:
Sosnowski, Z. A.
Rembowicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/404039.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci społeczne
grupowanie rozmyte
social networks
fuzzy c-means
Opis:
W pracy przedstawiono propozycje, uzyskane wyniki oraz wypływające z nich wnioski dotyczące zastosowania teorii zbiorów rozmytych do analizy sieci społecznych. Wyniki symulacji pokazują, że proponowane podejście wykorzystujące własności zbiorów rozmytych sprawdza się bardzo dobrze w analizie spójnych sieci społecznych z niedużą liczbą klastrów.
The paper presents proposals, the obtained results and the resulting conclusions concerning the use of fuzzy set theory to the analysis of social networks. The simulation results show that the proposed approach using fuzzy property works very well in the analysis of social networks consistent with a small number of clusters.
Źródło:
Symulacja w Badaniach i Rozwoju; 2012, 3, 3; 169-174
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of modified fuzzy clustering to medical data classification
Autorzy:
Jeżewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/333509.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
grupowanie rozmyte
klasyfikacja
dane medyczne
fuzzy clustering
classification
medical data
Opis:
Classification plays very important role in medical diagnosis. This paper presents fuzzy clustering method dedicated to classification algorithms. It focuses on two additional sub-methods modifying obtained clustering prototypes and leading to final prototypes, which are used for creating the classifier fuzzy if-then rules. The main goal of that work was to examine a performance of the classifier which uses such rules. Commonly used including medical benchmark databases were applied. In order to validate the results, each database was represented by 100 pairs of learning and testing subsets. The obtained classification quality was better in relation to the one of the best classifiers - Lagrangian SVM and suggests that presented clustering with additional sub-methods are appropriate to application to classification algorithms.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 51-57
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parallel fuzzy clustering for linguistic summaries
Podsumowania lingwistyczne z równoległym grupowaniem rozmytym
Autorzy:
Smolińska, M. K.
Sosnowski, Z. A.
Powiązania:
https://bibliotekanauki.pl/articles/341097.pdf
Data publikacji:
2009
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
podsumowania lingwistyczne
grupowanie rozmyte
programowanie równoległe
linguistic summary
fuzzy clustering
parallel computing
Opis:
Z podsumowaniem lingwistycznym, jak i z predykatem rozmytym związana jest wartość prawdy. Możemy więc podsumowań lingwistycznych używać jako predykatów rozmytych. Podsumowanie postaci większość obiektów w populacji P jest podobna do obiektu oi wykorzystać możemy do znajdowania typowych wartości w populacji P, które to wykorzystuje rozmyty algorytm grupujący. Wadą tego algorytmu jest jego duża złożoność obliczeniowa. W celu przetwarzania dużej liczby danych zaimplementowaliśmy ten algorytm równolegle, korzystając ze standardu MPI do komunikacji między procesami działającymi na różnych procesorach. W tej pracy przedstawiamy algorytm równoległy i wyniki eksperymentów.
The linguistic summaries have the associated truth value so they can be used as predicates. We use summaries of the form ”most objects in population P are similar to oi” to find typical values in population P. Then typical values are used in fuzzy clustering algorithm. Disadvantage of this algorithm is its complexity. For the purpose of processing the huge number of data, we decided to use parallel computing mechanism to implement this algorithm, and run it on the cluster machine. We use MPI (Message Passing Interface) to communicate between processes, which work on different processors. This paper presents this parallel algorithm and some results of experiments.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2009, 4; 139-150
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of biomedical signals using an unsupervised approach
Autorzy:
Przybyła, T.
Wróbel, J.
Czabański, R.
Horoba, K.
Pander, T.
Momot, M.
Powiązania:
https://bibliotekanauki.pl/articles/333275.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
atraktor
przestrzeń jądra
grupowanie rozmyte
embedded space
attractor
PCA
kernel space
fuzzy clustering
Opis:
The paper presents an unsupervised approach to biomedical signal segmentation. The proposed segmentation process consists of several stages. In the first step, a state-space of the signal is reconstructed. In the next step, the dimension of the reconstructed state-space is reduced by projection into principal axes. The final step involves fuzzy clustering method. The clustering process is applied in the kernel-feature space. In the experimental part, the fetal heart rate (FHR) signal is used. The FHR baseline and the acceleration or deceleration patterns are the main signal nonstationarities but also the most clinically important signal features determined and interpreted in computer-aided analysis.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 19; 125-131
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detekcja sakkad w sygnale ENG z użyciem grupowania rozmytego
An application of fuzzy clustering for saccade detection in ENG signal
Autorzy:
Pander, T.
Czabański, R.
Wróbel, J.
Horoba, K.
Przybyła, T.
Powiązania:
https://bibliotekanauki.pl/articles/98799.pdf
Data publikacji:
2013
Wydawca:
Politechnika Śląska. Katedra Biomechatroniki
Tematy:
detekcja sakkad
grupowanie rozmyte
sygnał ENG
oczopląs
saccade detection
fuzzy clustering
ENG signal
nystagmus
Opis:
Sygnał elektrynystagmograficzny (ENG) z oczopląsem ma postać fali o piłokształtnym kształcie składającym się z fazy wolnej oraz szybkiej. Faza szybka to ruch sakkadyczny gałki ocznej. Skuteczna i dokładna detekcja sakkad ma kluczowe znaczenie w określeniu charakteru oczopląsu. W celu prawidłowej detekcji położenia sakkad sygnał ENG jest filtrowany a maksima lokalne są wykrywane za pomocą rozmytej metody c-średnich. Proponowany algorytm charakteryzuje się dużą czułością i pozwala na automatyczną i precyzyjną lokalizację sakkad w sygnale ENG.
The electronystagmography (ENG) signal corresponding to nystagmus has a form of a saw tooth waveform with fast components related to saccades. The accurate detection of saccades in ENG signal is the base for the further estimation of the nystagmus characteristic. The proposed algorithm is based on the proper filtering of the ENG signal providing a waveform with amplitude peaks corresponding the fast eyes rotation. The correct recognition of the local maxima of the signal is obtained by the means of fuzzy c-means clustering (FCM). The proposed algorithm is highly sensitive and allows for the automatic and precise localization of the saccades in ENG signal.
Źródło:
Aktualne Problemy Biomechaniki; 2013, 7; 137-142
1898-763X
Pojawia się w:
Aktualne Problemy Biomechaniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized fuzzy clustering method
Autorzy:
Przybyła, T.
Roj, D.
Jeżewski, J.
Matonia, A.
Powiązania:
https://bibliotekanauki.pl/articles/332927.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
grupowanie rozmyte
uogólniona funkcja kosztów
grupowanie nienadzorowane
fuzzy clustering
fuzzy meridian
fuzzy myriad
generalized cost function
unsupervised clustering
Opis:
This paper presents a new hybrid fuzzy clustering method. In the proposed method, cluster prototypes are values that minimize the introduced generalized cost function. The proposed method can be considered as a generalization of fuzzy c–means (FCM) method as well as the fuzzy c–median (FCMed) clustering method. The generalization of the cluster cost function is made by applying the Lp norm. The values that minimize the proposed cost function have been chosen as the group prototypes. The weighted myriad is the special case of the group prototype, when the Lp norm is the L2 (Euclidean) norm. The cluster prototypes are the weighted meridians for the L1 norm. Artificial data set is used to demonstrate the performance of proposed method.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 69-76
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of distance between pedestrian crossings by students in one of the Polish cities
Autorzy:
Kruszyna, M.
Powiązania:
https://bibliotekanauki.pl/articles/230533.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
przejście dla pieszych
pieszy
ocena
odległość
grupowanie rozmyte
crossing
pedestrian
evaluation
distance
fuzzy grouping
Opis:
In this paper, the distances between pedestrian crossings in twenty one places in the city of Wrocław, together with their evaluation by the researched groups of students, were analyzed. The database created from the collected questionnaires contains a set of two-dimensional variables: the distance between crossings and the rating of the students. The database set was analyzed using a fuzzy data mining approach to create particular clusters. Various numbers of clusters were analyzed, and the division of data into three clusters made it possible to relate the analysis to the LOS methodology. Each variable was enriched with a third dimension representing a membership value. The obtained evaluated distances are similar to values recommended in literature, although the distances highly evaluated by the students do not often occur in reality. This might suggest that there is the need to create new crossings, especially in the city centre, where pedestrian traffic is or should be important.
Źródło:
Archives of Civil Engineering; 2013, 59, 4; 547-559
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy clustering based methods for nystagmus movements detection in electronystagmography signal
Autorzy:
Czabański, R.
Pander, T.
Horoba, K.
Przybyła, T.
Powiązania:
https://bibliotekanauki.pl/articles/332952.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
saccade detection
optokinetic nystagmus
fuzzy clustering
detekcja ruchów sakadowych
oczopląs optokinetyczny
grupowanie rozmyte
sygnał ENG
Opis:
The analysis of optokinetic nystagmus (OKN) provides valuable information about the condition of human vision system. One of the phenomena that is used in the medical diagnosis is optokinetic nystagmus. Nystagmus are voluntary or involuntarily eye movements being a response to a stimuli which activate the optokinetic systems. The electronystagmography (ENG) signal corresponding to the nystagmus has a form of a saw tooth waveform with fast components related to saccades. The accurate detection of the saccades in the ENG signal is the base for the further estimation of the nystagmus characteristic. The proposed algorithm is based on the proper filtering of the ENG signal providing a waveform with amplitude peaks corresponding the fast eyes rotation. The correct recognition of the local maxima of the signal is obtained by the means of fuzzy c-means clustering (FCM). The paper presents three variants of saccades detection algorithm based on the FCM. The performance of the procedures was investigated using the artificial as well as the real optokinetic nystagmus cycles. The proposed method provides high detection sensitivity and allows for the automatic and precise determination of the saccades location in the preprocessed ENG signal.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 277-283
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An approach to unsupervised classification
Autorzy:
Przybyła, T.
Pander, T.
Horoba, K.
Kupka, T.
Matonia, A.
Powiązania:
https://bibliotekanauki.pl/articles/333363.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
klasyfikacja
grupowanie rozmyte
klasyfikacja nienadzorowana
klasyfikator najbliższych sąsiadów
classification
fuzzy clustering
unsupervised classification
nearest neighbour classifier
Opis:
Classification methods can be divided into supervised and unsupervised methods. The supervised classifier requires a training set for the classifier parameter estimation. In the case of absence of a training set, the popular classifiers (e.g. K-Nearest Neighbors) can not be used. The clustering methods are considered as unsupervised classification methods. This paper presents an idea of the unsupervised classification with the popular classifiers. The fuzzy clustering method is used to create a learning set. The learning set includes only these patterns that are the best representative of each class in the input dataset. The numerical experiment uses an artificial dataset as well as the medical datasets (PIMA, Wisconsin Breast Cancer) and illustrates the usefulness of the proposed method.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 105-111
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new heuristic algorithm of fuzzy clustering
Autorzy:
Viattchenin, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/970349.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
grupowanie rozmyte
przydział
punkt typowy
fuzzy clustering
fuzzy tolerance
fuzzy cluster
membership degree
allotment
typical point
Opis:
This paper deals with a new method of fuzzy clustering. The basic concepts of the method are introduced as resulting from the consideration of the fundamental fuzzy clustering problem. The paper provides the description of the general plan of the algorithm and an illustrative example. An analysis of the experimental results of the method's application to the Anderson's Iris data is carried out. Some preliminary conclusions and the ways of prospective investigations are given.
Źródło:
Control and Cybernetics; 2004, 33, 2; 323-340
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new approach for the clustering using pairs of prototypes
Autorzy:
Jezewski, M.
Czabanski, R.
Leski, J.
Horoba, K.
Powiązania:
https://bibliotekanauki.pl/articles/333693.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
fuzzy clustering
pairs of prototypes
fuzzy rule-based classification
grupowanie rozmyte
pary prototypów
rozmyta klasyfikacja oparta na regułach
Opis:
In the presented work two variants of the fuzzy clustering approach dedicated for determining the antecedents of the rules of the fuzzy rule-based classifier were presented. The main idea consists in adding additional prototypes (’prototypes in between’) to the ones previously obtained using the fuzzy c-means method (ordinary prototypes). The ’prototypes in between’ are determined using pairs of the ordinary prototypes, and the algorithm based on distances and densities finding such pairs was proposed. The classification accuracy obtained applying the presented clustering approaches was verified using six benchmark datasets and compared with two reference methods.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 113-121
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An automatic hybrid method for retinal blood vessel extraction
Autorzy:
Yang, Y.
Huang, S.
Rao, N.
Powiązania:
https://bibliotekanauki.pl/articles/907899.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
naczynie krwionośne
ekstrakcja
obraz
siatkówka
morfologia matematyczna
grupowanie rozmyte
blood vessel extraction
retinal image
mathematical morphology
fuzzy clustering
Opis:
The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. This paper presents a novel hybrid automatic approach for the extraction of retinal image vessels. The method consists in the application of mathematical morphology and a fuzzy clustering algorithm followed by a purification procedure. In mathematical morphology, the retinal image is smoothed and strengthened so that the blood vessels are enhanced and the background information is suppressed. The fuzzy clustering algorithm is then employed to the previous enhanced image for segmentation. After the fuzzy segmentation, a purification procedure is used to reduce the weak edges and noise, and the final results of the blood vessels are consequently achieved. The performance of the proposed method is compared with some existing segmentation methods and hand-labeled segmentations. The approach has been tested on a series of retinal images, and experimental results show that our technique is promising and effective.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 3; 399-407
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decision support for hardware and software, complex for precision farming tasks: student project
Autorzy:
Ganchenko, V. V
Powiązania:
https://bibliotekanauki.pl/articles/397759.pdf
Data publikacji:
2014
Wydawca:
Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
Tematy:
image processing
agricultural field
fuzzy clustering
neural network
recognition
przetwarzanie obrazów
pole uprawne
grupowanie rozmyte
sieci neuronowe
rozpoznawanie obrazów
Opis:
In the article algorithms for decision support for hardware and software complex are described. The complex is used for few precision farming tasks: data mining, data processing, decision making and control of fertilizers applying. The complex is designed to reduce costs and environmental burden on potato. The complex is based on processing aerial images photographs of potato fields.
Źródło:
International Journal of Microelectronics and Computer Science; 2014, 5, 1; 5-13
2080-8755
2353-9607
Pojawia się w:
International Journal of Microelectronics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Granular representation of the information potentialof variables –application example
Ziarnista reprezentacja potencjału informacyjnego zmiennych –przykład zastosowania
Autorzy:
Kiersztyn, Adam
Gandzel, Agnieszka
Celiński, Maciej
Koczan, Leopold
Powiązania:
https://bibliotekanauki.pl/articles/2070228.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
granular computing
information granules
knowledge representation
fuzzy clustering
ecological data
obliczenia ziarniste
ziarna informacji
reprezentacja wiedzy
grupowanie rozmyte
dane ekologiczne
Opis:
With the introduction to the science paradigm of Granular Computing, in particular, information granules, the way of thinking about data has changed gradually. Both specialists and scientists stopped focusing on the single data records themselves, but began to look at the analyzed data in a broader context, closer to the way people think. This kind of knowledge representation is expressed, in particular, in approaches based on linguistic modelling or fuzzy techniques such as fuzzy clustering. Therefore, especially important from the point of view of the methodology of data research, is an attempt to understand their potential as information granules. In this study, we will present special cases of using the innovative method of representing the information potential of variables with the use of information granules. In a series of numerical experiments based on both artificially generated data and ecological data on changes in bird arrival dates in the context of climate change, we demonstrate the effectiveness of the proposed approach using classic, not fuzzy measures building information granules.
Wraz z wprowadzeniem do nauki paradygmatu obliczeń ziarnistych, w szczególności ziaren informacji, sposób myślenia o danych stopniowo się zmieniał. Zarówno specjaliści, jak i naukowcy przestali skupiać się na samych rekordach pojedynczych danych, ale zaczęli patrzeć na analizowane dane w szerszym kontekście, bliższym ludzkiemu myśleniu. Ten rodzaj reprezentacji wiedzy wyraża się w szczególności w podejściach opartych na modelowaniu językowym lub technikach rozmytych, takich jak klasteryzacja rozmyta. Dlatego szczególnie ważna z punktu widzenia metodologii badania danych jest próba zrozumienia ich potencjału jako ziaren informacji. W niniejszym opracowaniu przedstawimy szczególne przypadki wykorzystania innowacyjnej metody reprezentacji potencjału informacyjnego zmiennych za pomocą ziaren informacji. W serii eksperymentów numerycznych opartych zarówno na danych generowanych sztucznie, jak i danych ekologicznych dotyczących zmian dat przylotów ptaków w kontekście zmian klimatycznych, demonstrujemy skuteczność proponowanego podejścia przy użyciu klasycznych, a nie rozmytych miar budujących ziarna informacji.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2021, 11, 3; 40--44
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Knowledge-based clustering as a conceptual and algorithmic environment of biomedical data analysis
Autorzy:
Pedrycz, W.
Gacek, A.
Powiązania:
https://bibliotekanauki.pl/articles/333706.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wiedza i dane
grupowanie rozmyte
bliskość
włączenie
nadzór częściowy
niepewność
entropia
knowledge and data
fuzzy clustering
guidance mechanisms
proximity
inclusion
partial supervision
uncertainty
entropy
Opis:
While a genuine abundance of biomedical data available nowadays becomes a genuine blessing, it also posses a lot of challenges. The two fundamental and commonly occurring directions in data analysis deal with its supervised or unsupervised pursuits. Our conjecture is that in the area of biomedical data processing and understanding where we encounter a genuine diversity of patterns, problem descriptions and design objectives, this type of dichotomy is neither ideal nor the most productive. In particular, the limitations of such taxonomy become profoundly evident in the context of unsupervised learning. Clustering (being usually regarded as a synonym of unsupervised data analysis) is aimed at determining a structure in a data set by optimizing a given partition criterion. In this sense, a structure emerges (becomes formed) without a direct intervention of the user. While the underlying concept looks appealing, there are numerous sources of domain knowledge that could be effectively incorporated into clustering mechanisms and subsequently help navigate throughout large data spaces. In unsupervised learning, this unified treatment of data and domain knowledge leads to the general concept of what could be coined as knowledge-based clustering. In this study, we discuss the underlying principles of this paradigm and present its various methodological and algorithmic facets. In particular, we elaborate on the main issues of incorporating domain knowledge into the clustering environment such as (a) partial labelling, (b) referential labelling (including proximity and entropy constraints), (c) usage of conditional (navigational) variables, (d) exploitation of external structure. Presented are also concepts of stepwise clustering in which the structure of data is revealed via a series of refinements of existing domain granular information.
Źródło:
Journal of Medical Informatics & Technologies; 2004, 7; KB13-22
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reguły decyzyjne z rozmytą granulacją wiedzy
Decision rules with fuzzy granulation of knowledge
Autorzy:
Sosnowski, Z. A.
Powiązania:
https://bibliotekanauki.pl/articles/404232.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
klasyfikator rozmyty
rozmyte drzewa decyzyjne
rozmyte grupowanie kontekstowe
fuzzy classifier
fuzzy decision trees
context based FCM
Opis:
W pracy przedstawiono architekturę klasyfikatora rozmytego opartego na klastrowo-kontekstowych rozmytych drzewach decyzyjnych oraz zbadano jego wydajność na standardowych zestawach danych: Dermatology i Housing Data Sets. Wyniki symulacji pokazują, że przedstawiony klasyfikator daje zadowalające wskaźniki klasyfikacji.
In this paper, we present the architecture of fuzzy classifier based on context fuzzy cluster-oriented decision trees and examine its performance on Dermatology and Housing data sets. Simulation results show that the presented classifier has a satisfactory classification rate.
Źródło:
Symulacja w Badaniach i Rozwoju; 2012, 3, 4; 225-232
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Granular representation of biomedical signals using numerical differentiation methods
Autorzy:
Momot, M.
Momot, A.
Gacek, A.
Powiązania:
https://bibliotekanauki.pl/articles/332925.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
grupowanie
liczby rozmyte
granulacja informacji
interpolacja
kryterium odbudowy
clustering
fuzzy number
information granulation
interpolation
reconstruction criterion
Opis:
This work presents the general idea of granular description of temporal signal, particularly biomedical signal sampled with constant frequency. The main idea of presented method is based on using triangular fuzzy numbers as information granules in temporal and amplitude spaces. The amplitude space contains values of first few derivatives of underlying signal. The construction of data granules is performed using the optimization method according to some objective function, which balances the high coverage ability and the low support of fuzzy numbers. The granules (descriptors) undergo the clustering process, namely fuzzy c-means. The centroids of created clusters form a granular vocabulary and the quality of description is quantitatively assessed by reconstruction criterion. There are presented results of experiments with the electrocardiographic signal, digitally sampled and stored in MIT-BIH database. The method of numerical differentiation of function based on finite set of its values is employed, which incorporates polynomial interpolation. The paper presents results of numerical experiments which show the impact of method parameters, such as temporal window length, degree of polynomial, fuzzification parameter, on the reconstruction ability of presented method.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 43-49
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-18 z 18

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies