Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "grey wolf optimization algorithm" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Investigating multi-objective time, cost, and risk problems using the Grey Wolf Optimization algorithm
Autorzy:
Yilmaz, Mehmet
Dede, Tayfun
Grzywiński, Maksym
Powiązania:
https://bibliotekanauki.pl/articles/31342511.pdf
Data publikacji:
2023
Wydawca:
Politechnika Częstochowska
Tematy:
multi-objective optimization
grey wolf optimization algorithm
time-cost-risk
optymalizacja wielocelowa
algorytm optymalizacji szarego wilka
czas-koszt-ryzyko
Opis:
Safety plays a crucial role in construction projects. Safety risks encompass potential hazards such as work accidents, injuries, and security. Consequently, it is important to effectively manage these risks with equal emphasis on time and cost considerations during the project planning phase. Within the scope of this research, the grid and archive-based Grey Wolf Optimizer (GWO) algorithm was employed to investigate multi-objective time-cost-risk problems. By employing the GWO, multiple Pareto solutions were provided to the decisionmaker, facilitating improved decision-making. It was determined that the GWO algorithm yields better results in time-cost-risk problems compared to the Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms.
Źródło:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym; 2023, 12; 79-86
2299-8535
2544-963X
Pojawia się w:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm
Autorzy:
Shial, Gyanaranjan
Saho, Sabita
Panigrahi, Sibarama
Powiązania:
https://bibliotekanauki.pl/articles/27312857.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
grey wolf optimizer
JAYA algorithm
article swarm optimization
ine-cosinealgorithm
partitional clustering
Opis:
This paper presents a hybrid meta-heuristic algorithm that uses the grey wolfoptimization (GWO) and the JAYA algorithm for data clustering. The ideais to use the explorative capability of the JAYA algorithm in the exploitativephase of GWO to form compact clusters. Here, instead of using only one bestand one worst solution for generating offspring, the three best wolves (alpha,beta and delta) and three worst wolves of the population are used. So, the bestand worst wolves assist in moving towards the most feasible solutions and simul-taneously it helps to avoid from worst solutions; this enhances the chances oftrapping at local optimal solutions. The superiority of the proposed algorithmis compared with five promising algorithms; namely, the sine-cosine (SCA),GWO, JAYA, particle swarm optimization (PSO), and k-means algorithms.The performance of the proposed algorithm is evaluated for 23 benchmarkmathematical problems using the Friedman and Nemenyi hypothesis tests. Ad-ditionally, the superiority and robustness of our proposed algorithm is testedfor 15 data clustering problems by using both Duncan's multiple range test andthe Nemenyi hypothesis test.
Źródło:
Computer Science; 2023, 24 (3); 361--405
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Photovoltaic power prediction based on improved grey wolf algorithm optimized back propagation
Autorzy:
He, Ping
Dong, Jie
Wu, Xiaopeng
Yun, Lei
Yang, Hua
Powiązania:
https://bibliotekanauki.pl/articles/27309934.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
BP neural network
photovoltaic power generation
PSO–GWO model
PSO–GWO–BP prediction model
particle swarm optimization
gray wolf optimization
back propagation
standard grey wolf algorithm
Opis:
At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 613--628
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Global path planning for multiple AUVs using GWO
Autorzy:
Panda, Madhusmita
Das, Bikramaditya
Pati, Bibhuti
Powiązania:
https://bibliotekanauki.pl/articles/229749.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Autonomous Underwater Vehicle
AUV
Genetic Algorithm
GA
Global Path Planning
GPP
Grey Wolf Optimization
GWO
Sliding Mode Control
SMC
waypoints
Opis:
In global path planning (GPP), an autonomous underwater vehicle (AUV) tracks a predefined path. The main objective of GPP is to generate a collision free sub-optimal path with minimum path cost. The path is defined as a set of segments, passing through selected nodes known as waypoints. For smooth planar motion, the path cost is a function of the path length, the threat cost and the cost of diving. Path length is the total distance travelled from start to end point, threat cost is the penalty of collision with the obstacle and cost of diving is the energy expanse for diving deeper in ocean. This paper addresses the GPP problem for multiple AUVs in formation. Here, Grey Wolf Optimization (GWO) algorithm is used to find the suboptimal path for multiple AUVs in formation. The results obtained are compared to the results of applying Genetic Algorithm (GA) to the same problem. GA concept is simple to understand, easy to implement and supports multi-objective optimization. It is robust to local minima and have wide applications in various fields of science, engineering and commerce. Hence, GA is used for this comparative study. The performance analysis is based on computational time, length of the path generated and the total path cost. The resultant path obtained using GWO is found to be better than GA in terms of path cost and processing time. Thus, GWO is used as the GPP algorithm for three AUVs in formation. The formation follows leader-follower topography. A sliding mode controller (SMC) is developed to minimize the tracking error based on local information while maintaining formation, as mild communication exists. The stability of the sliding surface is verified by Lyapunov stability analysis. With proper path planning, the path cost can be minimized as AUVs can reach their target in less time with less energy expanses. Thus, lower path cost leads to less expensive underwater missions.
Źródło:
Archives of Control Sciences; 2020, 30, 1; 77-100
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies