- Tytuł:
- The Sum-the-Odds Theorem with Application to a Stopping Game of Sakaguchi
- Autorzy:
- Ferguson, Thomas S.
- Powiązania:
- https://bibliotekanauki.pl/articles/747806.pdf
- Data publikacji:
- 2016
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
- gra o sumie zerowej, dominacja, problem sekretarki
- Opis:
-
Problem optymalnego zatrzymania na ostatnim sukcesie w ciągu prób Bernoulli'ego z maksymalnym prawdopodobieństwem badali Hill i Krengel (1992), Hsiau i Yang (2000) oraz Bruss (2000). Optymalna reguła zatrzymania podana przez Brussa mówi, że należy zatrzymać się gdy suma ilorazów szans przyszłych sukcesów jest mniejsza niż jeden. Twierdzenie wykorzystujące sumy ilorazów szans zostało uogólnione na wiele sposobów. Przede wszystkim uogólniono na nieskńczony ciąg prób Bernoulli'ego. Innym jest dopuszczenie różnych wypłat za brak wyboru (zatrzymania) i zatrzymanie na sukcesie który nie jest ostatnim. Kolejne, to dopuszczeenie prób zależnych. Dalej, dopuszczono, aby na każdym etapie były obserwowane dodatkowe zmienne zależne, których obserwacja może zmienić ocenę prawdopodobieństwo sukcesu w przyszłych etapach. Wreszcie, zastosowano metodę do rozwiązania gry sformułowanej przez Sakaguchi'ego~(1984) w którym dwaj gracze współzawodniczą o prognozę ostatniego sukcesu, gdy jeden z graczy ma pierwszy prawo podjęcia decyzji na każdym kroku.
The optimal stopping problem of maximizing the probability of stopping on the last success of a finite sequence of independent Bernoulli trials has been studied by Hill and Krengel (1992), Hsiau and Yang (2000) and Bruss (2000). The optimal stopping rule of Bruss stops when the sum of the odds of future successes is less than one. This Sum-the-Odds Theorem is extended in several ways. First, an infinite number of Bernoulli trials is allowed. Second, the payoff for not stopping is allowed to be different from the payoff of stopping on a success that is not the last success. Third, the Bernoulli variables are allowed to be dependent. Fourth, the model is generalized to allow at each stage other dependent random variables to be observed that may influence the assessment of the probability of success at future stages. Finally, application is made to a game of Sakaguchi (1984) in which two players vie for predicting the last success, but in which one of the players is given priority of acting first. - Źródło:
-
Mathematica Applicanda; 2016, 44, 1
1730-2668
2299-4009 - Pojawia się w:
- Mathematica Applicanda
- Dostawca treści:
- Biblioteka Nauki