- Tytuł:
- Global attractivity of a higher order nonlinear difference equation with unimodal terms
- Autorzy:
-
Almaslokh, Abdulaziz
Qian, Chuanxi - Powiązania:
- https://bibliotekanauki.pl/articles/29519331.pdf
- Data publikacji:
- 2023
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
higher order difference equations
positive equilibrium
unimodal term
global attractivity
population model - Opis:
- In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms x(n + 1) = ax(n) + bx(n)g(x(n)) + cx(n − k)g(x(n − k)), n = 0, 1, . . . , where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1, g ∈ C[[0,∞), [0,∞)] is decreasing, and k is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.
- Źródło:
-
Opuscula Mathematica; 2023, 43, 2; 131-143
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki