Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "geological feature" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Geomatics in hydrogeology
Autorzy:
Michalak, J.
Powiązania:
https://bibliotekanauki.pl/articles/2059615.pdf
Data publikacji:
2003
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
geomatics
geospatial information
geological feature
hydrogeological feature
geological object
hydrogeological object
fuzzy feature
fiat feature
Opis:
Design and construction of hydrogeological information systems is now a necessity. For proper functionality of these systems, it is necessary to create them in accordance with widely accepted international standards regarding geospatial information. Geomatics research tools allow for creation of basic models of hydrogeological data, consistent with these standards. The models can be based upon classification of types and subtypes of hydrogeological features, as well as upon basic and derived classes of hydrogeological objects. The basis for this classification can be differentiation between features and objects, as well as between fuzzy features (objects) and fiat features (objects), or the analysis of their spatial dimensionality.
Źródło:
Geological Quarterly; 2003, 47, 1; 69-76
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Insight into a shape of salt storage caverns
Autorzy:
Cyran, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/218820.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
złoża soli kamiennej
kawerna solna
utylizacja odpadów przemysłowych
underground storage in rock salt deposit
geological feature
shape of salt caverns
irregularities
Opis:
Salt caverns are used for over 70 years to store power sources and dispose of industrial wastes. The design of cavern shape and dimensions is still considered as a difficult engineering problem despite progress in geotechnical, construction and exploration methods. The rational design of cavern depends on mechanical parameters of rock salt and nonsalt rocks, stability conditions, safety requirements and stored material. However, most of these factors are related to geological factors like depth of cavern location, the geological structure of salt deposit, lithology of interlayers, petrology and mineralogy of rock salt and interlayers. The significant diversity in the geological conditions of different rock salt deposits contributed to the variety in shape and dimensions of salt caverns worldwide. In this paper, the examples of caverns developed in various salt deposits are presented. The shape of these caverns and its relation to geological features is presented. The influence of geological factors on the formation of irregularities in a cavern shape is described. Moreover, the evaluation of storage caverns located in Polish salt deposits in a view of the aforementioned geological factors is performed. The information and analysis described in this paper provide input which can be useful in future plans connected with the development of underground storage in Poland.
Źródło:
Archives of Mining Sciences; 2020, 65, 2; 363-398
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A machine learning method for soil conditioning automated decision-making of EPBM : hybrid GBDT and Random Forest Algorithm
Autorzy:
Lin, Lin
Guo, Hao
Lv, Yancheng
Liu, Jie
Tong, Changsheng
Yang, Shuqin
Powiązania:
https://bibliotekanauki.pl/articles/2087007.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
soil conditioning
automated decision-making
hybrid algorithm
geological parameters
drive parameters
feature selection
Opis:
There lacks an automated decision-making method for soil conditioning of EPBM with high accuracy and efficiency that is applicable to changeable geological conditions and takes drive parameters into consideration. A hybrid method of Gradient Boosting Decision Tree (GBDT) and random forest algorithm to make decisions on soil conditioning using foam is proposed in this paper to realize automated decision-making. Relevant parameters include decision parameters (geological parameters and drive parameters) and target parameters (dosage of foam). GBDT, an efficient algorithm based on decision tree, is used to determine the weights of geological parameters, forming 3 parameters sets. Then 3 decision-making models are established using random forest, an algorithm with high accuracy based on decision tree. The optimal model is obtained by Bayesian optimization. It proves that the model has obvious advantages in accuracy compared with other methods. The model can realize real-time decision-making with high accuracy under changeable geological conditions and reduce the experiment cost.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 2; 237--247
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies