Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "genome wide association" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Gwas data analysis with the use of machine learning algorithms – review
Analiza danych GWAS przy użyciu algorytmów uczenia maszynowego – przegląd literatury
Autorzy:
Kloska, Sylwester Michał
Marciniak, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2016322.pdf
Data publikacji:
2020
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
machine learning
genome-wide association studies
GWAS
artificial intelligence
bioinformatics
uczenie maszynowe
badanie asocjacyjne całego genomu
sztuczna inteligencja
bioinformatyka
Opis:
Machine learning is a part of field concerned with AI. The main goal of machine learning algorithms is to create automatic system that improves itself with the use of its experience (given data) to gain new knowledge. Genome-Wide Association Studies compare whole genomes of different individuals in order to see if any of genetic variants are correlated with a trait. Using ML for GWAS analysis can be beneficial for scientists. It has been proved several times in various ways.
Uczenie maszynowe jest dziedziną nauki związaną ze sztuczną inteligencją. Głównym celem algorytmów uczenia maszynowego jest stworzenie automatycznego systemu, który poprawia się dzięki wykorzystaniu swojego doświadczenia (danych) w celu zdobycia nowej wiedzy. Badania asocjacyjne całego genomu (GWAS) porównują całe genomy różnych osobników, aby sprawdzić, czy którykolwiek z wariantów genetycznych jest skorelowany z cechą. Wykorzystanie ML do analizy GWAS może być korzystne dla naukowców. Zostało to udowodnione na różne sposoby.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2019, 23; 23-32
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genome-wide association studies of cryostability of semen in roosters
Autorzy:
Dementieva, N.V.
Kudinov, A.A.
Pozovnikova, M.V.
Nikitkina, E.V.
Pleshanov, N.V.
Silyukova, Y.L.
Krutikova, A.A.
Plemyashov, K.V.
Powiązania:
https://bibliotekanauki.pl/articles/2087292.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Genome-Wide Association Studies
cryostability
rooster sperm
Źródło:
Polish Journal of Veterinary Sciences; 2020, 23, 3; 461-463
1505-1773
Pojawia się w:
Polish Journal of Veterinary Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic factors contributing to the development of inguinal hernias – a narrative review
Autorzy:
Kalali, Datis
Powiązania:
https://bibliotekanauki.pl/articles/40614533.pdf
Data publikacji:
2024-06-30
Wydawca:
Uniwersytet Rzeszowski. Wydawnictwo Uniwersytetu Rzeszowskiego
Tematy:
genes
genetics
genome-wide association
inguinal hernias
polymorphisms
studies
Opis:
Introduction and aim. Inguinal hernias are one of the major disorders in the field of general and visceral surgery and can be viewed as multifactorial diseases. Although the molecular mechanism that led to predistortion to inguinal herniation still remain unclear, is well known that defects leading to improper closure of the inguinal canal during fetal development and mechanisms contributing to weaker muscles of the abdominal wall can greatly increase the risk of developing the latter disease. Material and methods. A literature search was performed in all major electronic databases using keywords and Boolean operators to retrieve all available literature related to the topic. Due to the narrative nature of the review, there were no specific inclusion and exclusion criteria. Analysis of the literature. Genetic factors, undoubtedly, can interfere with these mechanisms and therefore play major role in developing hernias. To this end, the present narrative review provides an overview of genes with altered expression and genetic polymorphisms associated with inguinal herniation. Moreover, the results of genome-wide association studies (GWAS) exploring susceptible genetic loci associated with the disease have been reported. Conclusion. Nevertheless, more case-control studies and GWAS need to be conducted in different ethnic populations so as to provide better insights into the topic.
Źródło:
European Journal of Clinical and Experimental Medicine; 2024, 22, 2; 417-423
2544-2406
2544-1361
Pojawia się w:
European Journal of Clinical and Experimental Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
EA-MOSGWA : narzędzie do wyznaczania przyczynowych genów w badaniach GWAS
EA-MOSGWA : a tool for identifying causal genes in Genome Wide Association Studies
Autorzy:
Gola, A.
Powiązania:
https://bibliotekanauki.pl/articles/103682.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
Tematy:
algorytm ewolucyjny
badanie asocjacyjne całego genomu
regresja liniowa
evolutionary algorithm
genome wide association
linear regression
Opis:
Praca przedstawia aktualny stan rozwoju programu EA-MOSGWA. Jest to narzędzie służące do wyznaczania przyczynowych genów w badaniach asocjacyjnych całego genomu (ang. Genome Wide Association Studies, GWAS). Badania GWAS mają na celu określenie genów, które mogą być odpowiedzialne za różnego rodzaju choroby genetyczne (np. rak, cukrzyca), a także genów, które wpływają na daną cechę, np. wzrost lub wagę. Sprowadzają się one do przebadania wielu tysięcy polimorfizmów pojedynczego nukleotydu (ang. Single Nucleotide Polymorphism, SNP) i powiązaniu ich (pojedynczych lub grupy SNP-ów) z przypadkami klinicznymi oraz możliwymi do zmierzenia cechami. Bardzo ważne w tego typu badaniach jest określenie jak największej liczby przyczynowych SNPów (ang. True Positive) przy jednoczesnej minimalizacji liczby fałszywych SNP-ów (ang. False Positive), czyli takich, które w rzeczywistości nie są przyczynowymi, a program zaklasyfikował je jako przyczynowe. W pracy przedstawiono wyniki symulacji, które pokazują, że zaproponowany algorytm ma dobre właściwości dotyczące dwóch badanych parametrów statystycznych.
This paper presents the current stage of the development of EA-MOSGWA – a tool for identifying causal genes in Genome Wide Association Studies (GWAS). The main goal of GWAS is to identify genes which are causa for a particular disease and also genes which may be responsible for a given trait, e.g eyes color. The studiem conduct to examine hundred of thousand Single Nucleotide Polymorphisms (SNP) and assign them to clinical cases or the measurable traits. Very important in this kind of research is to identify as many causal SNP as possible while minimizing the number of false SNPs. A false positive SNP is a SNP which in fact is not causal and the program has classified him as a causal. I present the results of the simulation study, which show that the proposed algorithm has good properties with respect to these two statistical parameters. I present the results of the simulation study, chich show that the proposed algorithm has good properties with respect to these two statistical parameters.
Źródło:
Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa; 2013, T. 1; 247-260
2300-5343
Pojawia się w:
Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
EA-MOSGWA : a tool for identifying associated SNPs in Genome Wide Association Studies
EA-MOSGWÀ : narzędzie do identyfikacji przyczynowych SNPów w badaniach asocjacyjnych całego genomu
Autorzy:
Gola, A.
Bogdan, M.
Frommlet, F.
Powiązania:
https://bibliotekanauki.pl/articles/375689.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
evolutionary algorithm
Genome Wide Association
linear regression
Opis:
This paper presents the current stage of the development of EA-MOSGWA - a tool for identifying causal genes in Genome Wide Association Studies (GWAS). The main goal of GWAS is to identify chromosomal regions which are associated with a particular disease (e.g. diabetes, cancer) or with some quantitative trait (e.g height or blood pressure). To this end hundreds of thousands of Single Nucleotide Polymorphisms (SNP) are genotyped. One is then interested to identify as many SNPs as possible which are associated with the trait in question, while at the same lime minimizing the number of false detections. The software package MOSGWA allows to detect SNPs via variable selection using the criterion mBIC2, a modified version of the Schwarz Bayesian Information Criterion. MOSGWA tries to minimize mBIC2 using some stepwise selection methods, whereas EA-MOSGWA applies some advanced evolutionary algorithms to achieve the same goal. We present results from an extensive simulation study where we compare the performance of EA-MOSGWA when using different parameter settings. We also consider using a clustering procedure to relax the multiple testing correction in mBlC2. Finally we compare results from EA-MOSGWA with the original stepwise search from MOSGWA, and show that the newly proposed algorithm has good properties in terms of minimizing the mBIC2 criterion, as well as in minimizing the misclassification rate of detected SNPs.
W artykule przedstawiony jest aktualny stan rozwoju programu EA-MOSGWA - narzędzia służącego do identyfikacji przyczynowych genów w badaniach asocjacyjnych całego genomu (ang. Genome Wide Association Studies, GWAS). Głównym celem tych badań jest określenie tych rejonów chromosomu, które są związane z występowaniem chorób genetycznych (np. cukrzyca, rak) lub wpływają na daną cechę (np. wysokość lub ciśnienie krwi). Sprowadzają się one do przebadania wielu tysięcy polimorfizmów pojedynczego nukleotydu (ang. Single Nucleotide Polymorphisme SNP) i powiązaniu ich (pojedynczych lub grupy SNPów) z przypadkami klinicznymi oraz możliwymi do zmierzenia cechami. Kluczową kwestią jest zidentyfikowanie jak największej liczby przyczynowych SNPów przy jednoczesnej minimalizacji fałszywych odkryć. Program MOSGWA umożliwia detekcje SNPów poprzez wybór zmiennych z użyciem kryterium mBIC2 - zmodyfikowanej wersji Bayesowskiego kryterium informacyjnego Schwarza. MOSGWA stara się zminimalizować mBIC2 przy pomocy metody selekcji Stepwise, podczas gdy EA-MOSGWA wykorzystuje w tym cclu zmodyfikowaną wersję algorytmu ewolucyjnego. W artykule prezentujemy wyniki szeroko zakrojonych badań symulacyjnych, w których możemy porównać wydajność EA-MOSGWA przy użyciu różnych ustawień parametrów. Również bierzemy pod uwagę klasteryzację SNPów, aby złagodzić korekcje wielokrotnego testowania w metodzie mBIC2. Przedstawiamy także porównanie wyników otrzymanych przez EA-MOSGWA z wynikami metody Stepsiwe używanej w programie MOSGWA, aby pokazać że proponowana metoda ma dobre właściwości minimalizacji kryterium mBIC2 oraz minimalizacji wskaźnika fałszywych detekcji.
Źródło:
Theoretical and Applied Informatics; 2013, 25, 3-4; 251-262
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies