Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "genetic algorithm controller" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Computer simulation of the genetic controller for the EB flue gas treatment process
Autorzy:
Moroz, Z.
Boużyk, J.
Sowiński, M.
Chmielewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/147569.pdf
Data publikacji:
2001
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
genetic algorithm controller
flue gas
Opis:
The use of the computer genetic algorithm (GA) for driving a controller device for the industrial flue gas purification systems employing the electron beam irradiation, has been studied. As the mathematical model of the installation the properly trained artificial neural net (ANN) was used. Various cost functions and optimising strategies of the genetic code were tested. These computer simulations proved, that ANN + GA controller can be sufficiently precise and fast to be applied in real installations.
Źródło:
Nukleonika; 2001, 46, 3; 107-115
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic algorithm tuned IP controller for Load Frequency Control of interconnected power systems with HVDC links
Autorzy:
Selvakumaran, S.
Rajasekaran, V.
Karthigaivel, R.
Powiązania:
https://bibliotekanauki.pl/articles/140655.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
genetic algorithm
Load Frequency Control
IP controller
AC-DC tie-lines
interconnected thermal non-reheat power systems
Opis:
A new design of decentralized Load Frequency Controller for interconnected thermal non-reheat power systems with AC-DC parallel tie-lines based on Genetic Algorithm (GA) tuned Integral and Proportional (IP) controller is proposed in this paper. A HVDC link is connected in parallel with an existing AC tie-line to stabilize the frequency oscillations of the AC tie-line system. Any optimum controller selected for load frequency control of interconnected power systems should not only stabilize the power system but also reduce the system frequency and tie line power oscillations and settling time of the output responses. In practice Load Frequency Control (LFC) systems use simple Proportional Integral (PI) or Integral (I) controller. The controller parameters are usually tuned based on classical or trial-and-error approaches. But they are incapable of obtaining good dynamic performance for various load change scenarios in multi-area power system. For this reason, in this paper GA tuned IP controller is used. A two area interconnected thermal non-reheat power system is considered to demonstrate the validity of the proposed controller. The simulation results show that the proposed controller provides better dynamic responses with minimal frequency and tie-line power deviations, quick settling time and guarantees closed-loop stability margin.
Źródło:
Archives of Electrical Engineering; 2014, 63, 2; 161-175
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
Autorzy:
Kumar, V. E.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/141105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverted pendulum
LQR controller
particle swarm optimization (PSO)
genetic algorithm
adaptive inertia weight factor
state feedback control
Opis:
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 345-365
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie i analiza algorytmów rojowych w optymalizacji parametrów regulatora kursu statku
Study and analysis of swarm intelligence in optimizing parameters of the ship course controller
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/266857.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
algorytm genetyczny
optymalizacja stochastyczna
regulator PID
sterowanie statkiem
swarm intelligence
genetic algorithm
random optimization
PID controller
ship control
Opis:
W pracy przedstawione zostały badania i analiza zastosowania wybranych algorytmów rojowych do optymalizacji parametrów regulatora PID w układzie sterowania statkiem na kursie. Optymalizacja ta polegała na minimalizacji czasowego wskaźnika jakości wyznaczanego na podstawie odpowiedzi skokowej. Do optymalizacji parametrów regulatora kursu statku wykorzystane zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Przeprowadzone zostały badania szybkości znajdowania optymalnego rozwiązania i wykonana została analiza porównawcza uzyskanych wyników. Zaprezentowane wyniki badań pozwalają stwierdzić, że algorytm optymalizacji rojem cząstek charakteryzuje się najlepszą jakością optymalizacji parametrów regulatora kursu statku.
The paper presents the research and analysis of the use of certain swarm intelligence algorithms to optimize the parameters of PID control in a ship on the course. This optimization was to minimize the performance quality index based on step response of the mathematical model of control system. To optimize the parameters of the ship course controller have been used swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Rate tests were conducted to find the optimal solution and a comparative analysis of the results was made. The presented results of research allow us to conclude that the particle swarm optimization (PSO) algorithm has the best quality of optimizing the control parameters of the course controller.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 103-106
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128163.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137348, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie regulatora ułamkowego rzędu PD do automatycznego sterowania zamówieniami dla magazynu ze zmiennym w czasie opóźnieniem dostaw
Application of a Fractional Order PD Controller for Automatic Orders Control System for a Warehouse with Time-Varying Deliveries Delay
Autorzy:
Abrahamowicz, E.
Orłowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/275760.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
regulator niecałkowitego rzędu
system magazynowy
układ sterowania
zmienne opóźnienie
układ dyskretny
algorytm genetyczny
fractional order controller
inventory system
control systems
variable delay
discrete-time system
genetic algorithm
Opis:
W pracy zaproponowano wykorzystanie regulatora niecałkowitego rzędu w systemie magazynowym z automatycznym sterowaniem wielkością dostaw. Rozważania oparto na dyskretnym, niestacjonarnym, dynamicznym modelu systemu magazynowego ze zmiennym w czasie opóźnieniem. W układzie sterowania zamówieniami wykorzystano dyskretny regulator niecałkowitego rzędu PDμ, strukturę feedback-feedforward oraz zmodyfikowany predyktor Smitha. Parametry układu regulacji zostały wyznaczone w wyniku optymalizacji z wykorzystaniem algorytmu genetycznego. W celu oceny jakości regulacji zastosowane zostały wskaźniki jakości bazujące na ocenie zajętości powierzchni magazynowej oraz utraconych korzyści. Przedstawione zostały wyniki badań symulacyjnych dla regulatorów całkowitego oraz niecałkowitego rzędu, co umożliwiło dokonanie analizy porównawczej skuteczności działania obu regulatorów.
In the paper a fractional controller is employed in the automatic control warehouse system. A discrete, non-stationary and dynamic model with variable time delay of the inventory system is assumed. The control system uses a discrete fractional order feedback-feedforward PDμ controller with Smith predictor. The parameters of the control system are determined using numerical optimization – genetic algorithm. In order to assess the control quality a two quality indicators are employed. First one bases on an assessment of occupancy of warehouse space and second one the lost benefits. The simulation results are shown for two controllers: fractional controller and for comparison for classical integer order PD controller.
Źródło:
Pomiary Automatyka Robotyka; 2016, 20, 2; 5-10
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173628.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137348
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies