Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "general edge coloring" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
An Improved Upper Bound on Neighbor Expanded Sum Distinguishing Index
Autorzy:
Vučković, Bojan
Powiązania:
https://bibliotekanauki.pl/articles/32083737.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
general edge coloring
total coloring
neighbor sum distinguishing index
Opis:
A total k-weighting f of a graph G is an assignment of integers from the set {1, . . ., k} to the vertices and edges of G. We say that f is neighbor expanded sum distinguishing, or NESD for short, if Σw∈N(v) (f(vw) + f(w)) differs from Σw∈N(u)(f(uw) + f(w)) for every two adjacent vertices v and u of G. The neighbor expanded sum distinguishing index of G, denoted by egndiΣ(G), is the minimum positive integer k for which there exists an NESD weighting of G. An NESD weighting was introduced and investigated by Flandrin et al. (2017), where they conjectured that egndiΣ(G) ≤ 2 for any graph G. They examined some special classes of graphs, while proving that egndiΣ(G) ≤ χ(G) + 1. We improve this bound and show that egndiΣ(G) ≤ 3 for any graph G. We also show that the conjecture holds for all bipartite, 3-regular and 4-regular graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 323-329
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on Neighbor Expanded Sum Distinguishing Index
Autorzy:
Flandrin, Evelyne
Li, Hao
Marczyk, Antoni
Saclé, Jean-François
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/31342189.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
general edge coloring
total coloring
neighbor-distinguishing index
neighbor sum distinguishing coloring
Opis:
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . ., k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 29-37
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a Total Version of 1-2-3 Conjecture
Autorzy:
Baudon, Olivier
Hocquard, Hervé
Marczyk, Antoni
Pilśniak, Monika
Przybyło, Jakub
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/31348090.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
neighbor sum distinguishing total coloring
general edge coloring
total coloring
neighbor-distinguishing index
neighbor full sum distinguishing total k -coloring
Opis:
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set {1, . . ., k}. These colors can be used to distinguish adjacent vertices of G. There are many possibilities of such a distinction. In this paper, we focus on the one by the full sum of colors of a vertex, i.e., the sum of the color of the vertex, the colors on its incident edges and the colors on its adjacent vertices. This way of distinguishing vertices has similar properties to the method when we only use incident edge colors and to the corresponding 1-2-3 Conjecture.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1175-1186
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies