Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gaz LNG" wg kryterium: Temat


Tytuł:
Znaczenie dostaw LNG w zbilansowaniu zapotrzebowania na gaz ziemny krajów UE
The significance of LNG supplies for balancing the natural gas demand in the EU countries
Autorzy:
Biały, R.
Janusz, P.
Ruszel, M.
Szurlej, A.
Powiązania:
https://bibliotekanauki.pl/articles/394021.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
gaz ziemny
LNG
terminale regazyfikacyjne
bezpieczeństwo energetyczne
natural gas
regasification terminals
energy security
Opis:
Na przestrzeni ostatniej dekady zauważalne są zmiany w strukturze zużycia energii pierwotnej w krajach UE. Jedną z najistotniejszych zmian jest rosnący udział przypadający na odnawialne źródła energii (OZE). Wzrost udziału OZE wynika między innymi z prowadzonej polityki mającej na celu zmniejszenie emisji gazów cieplarnianych. W osiągnieciu zamierzonych celów wykorzystywane są te nośniki energii, których wpływ na środowisko przyrodnicze jest jak najmniejszy, do takich paliw zaliczany jest gaz ziemny. Udział tego paliwa w bilansie energetycznym UE w analizowanym okresie, tj. od 2006 do 2016 r., utrzymuje się na względnie stałym poziomie. Natomiast w przypadku poszczególnych państw jego udział w bilansie energetycznym jest uzależniony od specyfiki danego państwa. Bez względu na udział gazu ziemnego w strukturze zużycia energii poszczególnych państw, dążą one do dywersyfikacji dostaw gazu ziemnego. Jednym z głównych elementów dywersyfikacji dostaw gazu ziemnego jest budowa terminali regazyfikacyjnych LNG. Z uwagi na fakt, że wzrasta ilość państw, które zainteresowane są eksportem gazu ziemnego w formie LNG, wzrasta także zainteresowanie odbiorem tego gazu przez państwa uzależnione od jego importu. W artykule przedstawiono stopień wykorzystania terminali regazyfikacyjnych LNG w Europie w okresie od 2012 do stycznia 2018 roku. Scharakteryzowano również terminal LNG w Świnoujściu, stopień jego wykorzystania oraz plany rozbudowy. Europa posiada znaczne możliwości importu gazu ziemnego poprzez terminale LNG, jednak do tej pory wykorzystywane one były w ograniczonym zakresie, świadczyć to może o tym, że oprócz zadań dywersyfikacyjnych terminale stanowią zabezpieczenie na wypadek przerw w dostawach gazu przy użyciu gazociągów.
Over the last decade, changes in the structure of primary energy consumption in EU countries have been noticeable. One of the most important changes is the growing share attributable to renewable energy sources (RES). The increase in RES share results, among others, from the policy pursued to reduce greenhouse gas emissions. In achieving the intended goals, these energy carriers are used, the impact of which is the smallest possible on the natural environment, natural gas is included in such fuels. The share of this fuel in the EU energy balance in the analyzed period, i.e. from 2006 to 2016, remains at a stable level. However, in the case of individual countries, its share in the energy balance depends on the specificity of a given country. Regardless of the share of natural gas in the energy consumption structure of individual countries, they strive to diversify the supply of natural gas. One of the main elements of the diversification of natural gas supplies is the construction of LNG regasification terminals. Due to the fact that the number of countries interested in exporting natural gas in the form of LNG is increasing, there is also an increasing interest in receiving gas from countries dependent on its imports. The article presents the utilization of LNG regasification terminals in Europe in the period from 2012 to January 2018. The LNG terminal in Świnoujście was also characterized, its utilization rate and plans for its extension. Europe possesses significant possibilities of importing natural gas through LNG terminals, but until now they have been used to a limited extent, it may indicate that in addition to diversification tasks, terminals are a guarantee in the event of interruptions in gas supplies using gas pipelines.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2018, 102; 231-244
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Złoża gazu ziemnego we wschodniej części Morza Śródziemnego: implikacje dla Cypru
Autorzy:
Osiewicz, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/625273.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
Cypr
gaz ziemny
LNG
Turcja
wydobycie
Opis:
Odkrycie wielkich złóż gazu ziemnego we wschodniej części Morza Śródziemnego stanowi szansę nie tylko na powszechne wzbogacenie, wzrost wolumenu inwestycji czy zwiększenie liczby miejsc pracy, ale może przyczynić się także do wzrostu regionalnego bezpieczeństwa i stanowić zachętę do uregulowania dotychczasowych sporów. Jest też druga strona medalu. Kwestia eksploatacji złóż może wywoływać nowe spory lub nawet doprowadzić do konfliktu. W przypadku złóż cypryjskich oba scenariusze są nadal prawdopodobne. Nieuregulowany problem polityczny wpływa bowiem pośrednio na kwestie energetyczne, zwłaszcza możliwości inwestycyjne związane z późniejszym przesyłem. Kluczową rolę odgrywają trzy strony: 1) Republika Cypryjska, która de facto jest państwem podzielonym i administrowanym jedynie przez Greckich Cypryjczyków; 2) nieuznawana przez społeczność międzynarodową, za wyjątkiem Turcji, Turecka Republika Północnego Cypru – państwo Tureckich Cypryjczyków oraz 3) Turcja. Celem niniejszego rozdziału jest zbadanie wpływu kwestii energetycznych na pozycję Cypru w regionie, jego sytuację gospodarczą oraz negocjacje pomiędzy Greckimi i Tureckimi Cypryjczykami.
Źródło:
Rocznik Integracji Europejskiej; 2014, 8; 93-104
1899-6256
Pojawia się w:
Rocznik Integracji Europejskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zapotrzebowanie na gaz ziemny w Polsce i możliwości jego zaspokojenia
Natural Gas Demand in Poland and Possibilities of Its Fulfillment
Autorzy:
Kaliski, M.
Szurlej, A.
Powiązania:
https://bibliotekanauki.pl/articles/282708.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
gaz ziemny
zasoby gazu ziemnego
wydobycie krajowe
LNG
natural gas
natural gas reserves
domestic production
Opis:
W artykule przedstawiono popyt na gaz ziemny w ostatnich latach w Polsce oraz strukturę podaży gazu ze szczególnym uwzględnieniem wydobycia tego surowca z rodzimych złóż. Porównano stan dywersyfikacji dostaw gazu ziemnego do Polski na tle wybranych państw UE w 2008 r. Następnie przybliżono wpływ kryzysu gazowego z początku 2009 r. na krajowy rynek gazu oraz podjęto próbę określenia struktury dostaw tego surowca do Polski w perspektywie do 2022 r. Przewidywane wielkości dostaw z uwzględnieniem odbioru LNG odniesiono do prognozy zapotrzebowania na gaz z projektu Polityki energetycznej Polski do 2030 r.
The article explains the meaning of natural gas in the structure of primary energy consumption in Poland compared to some EU states. Natural gas demand in the last years in Poland and the structure of natural gas supplies considering its extraction from domestic sources were also presented in the article. Furthermore, the article shows the influence of the gas crisis, from the beginning of the year of 2009, on the home market of gas (the origin of the crisis, the course, actions of energy enterprises and the government civil service aiming at the minimization of its effects). Actions taken within the scope of the diversification of natural gas supplies with special focus on building of LNG gas port in Świnoujście were characterised. Next, an attempt to determine the structure of natural gas supplies to Poland in the perspective until 2022 was made. Predicted natural gas supply scale, considering the receipt of this natural resource as LNG from 2014, was related to the forecast of natural gas demand taken from the project of the Poland's Energy Policy until 2030. The increase in the magnitude of the demand for natural gas in the perspective of the next few years will considerably depend on dynamics of the development of investments in the gas power industry.
Źródło:
Polityka Energetyczna; 2009, T. 12, z. 2/2; 217-227
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie egzergii kriogenicznej skroplonego gazu ziemnego do produkcji energii elektrycznej
Exploiting the cryogenic exergy of liquefied natural gas in production of electricity
Autorzy:
Simla, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/101683.pdf
Data publikacji:
2016
Wydawca:
Politechnika Śląska. Wydział Inżynierii Środowiska i Energetyki. Instytut Techniki Cieplnej
Tematy:
skroplony gaz ziemny
regazyfikacja
egzergia kriogeniczna
odzysk energii
terminal LNG w Świnoujściu
LNG
regasification
cryogenic exergy
energy recovery
Świnoujście LNG terminal
Opis:
Gaz ziemny jest paliwem kopalnym o największej dynamice wzrostu udziału w światowym miksie energetycznym. Transport gazu w postaci skroplonej (LNG, ang. liquefied natural gas) stanowi alternatywę dla tradycyjnego transportu rurociągowego. Polska dołącza do światowego rynku LNG dzięki wybudowanemu w Świnoujściu terminalowi regazyfikacyjnemu. Proces skraplania gazu jest bardzo energochłonny. Część energii wykorzystanej w tym procesie zostaje zmagazynowana w LNG jako egzergia kriogeniczna. W konwencjonalnym procesie regazyfikacji egzergia ta jest tracona poprzez uwalnianie do wody morskiej lub innego czynnika służącego jako zewnętrzne źródło ciepła. Istnieje wiele koncepcji wykorzystania egzergii kriogenicznej LNG. Wśród możliwych zastosowań jest wykorzystanie LNG do produkcji energii elektrycznej poprzez użycie go jako dolnego źródła ciepła w obiegach termodynamicznych lub bezpośrednio jako czynnika obiegowego. W ramach niniejszej pracy zamodelowano cztery układy technologiczne regazyfikacji LNG: dwa układy bez odzysku „zimnej” egzergii oraz dwa układy z odzyskiem, produkujące energię elektryczną. Podstawowe dane wejściowe do modelu (strumień masowy, ciśnienie gazu) odpowiadają rzeczywistym parametrom pracy terminalu w Świnoujściu. Wykonano symulację działania wszystkich układów dla zmiennej w skali roku temperatury otoczenia. Obliczono szereg wskaźników służących do porównania między sobą poszczególnych układów, takich jak średnioroczne zużycie paliwa, sprawność egzergetyczna i wskaźnik skumulowanego zużycia energii.
Natural gas is a fossil fuel, the share of which in the global energy mix is growing the fastest. Transportation of natural gas in liquefied form (LNG) is an alternative to traditional pipeline transport. Poland joins the global LNG market through the receiving terminal which was built in Świnoujście. The liquefaction process is very energy-consuming. Some energy utilised in this process gets stored in LNG as cryogenic exergy. In a conventional regasification process this exergy is destroyed by releasing to sea water or other fluid serving as an external heat source. There are numerous ideas to recover the cryogenic exergy of LNG. Among possible applications, the use of LNG to produce electricity by using it as a lower heat source in thermodynamic cycles or directly as a working fluid can be considered. In the present paper, an analysis of four regasification systems was carried out: two systems without cold exergy recovery and two systems that produce electricity. Main input data to the analysis (mass flow, pressure) correspond to real parameters of natural gas in the Świnoujście LNG receiving terminal. A simulation of operation of the systems for the whole year (with varying ambient temperature) was performed. In order to compare the analysed systems, a number of coefficients, such as average fuel consumption, exergetic efficiency and coefficient of cumulative energy consumption, was calculated.
Źródło:
Archiwum Instytutu Techniki Cieplnej; 2016, 1; 113-151
2451-277X
Pojawia się w:
Archiwum Instytutu Techniki Cieplnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zasilania silników okrętowych paliwem gazowym na wielkość projektowego współczynnika efektywności energetycznej EEDI na przykładzie wybranego kontenerowca
Influence of Supply of Gas Fuel Marine Engines on Value of Energy Efficiency Design Index on the Example of Selected Container Ship
Autorzy:
Giernalczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/342034.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydawnictwo Uniwersytetu Morskiego w Gdyni
Tematy:
Konwencja MARPOL 73/78
paliwo pozostałościowe
gaz ziemny
projektowy współczynnik efektywności energetycznej EEDI
International Convention for the Prevention of Pollution from Ships MARPOL 73/78
heavy fuel oil (HFO)
gas fuel (LNG)
Energy Efficiency Design Index (EEDI)
Opis:
Celem artykułu jest zwrócenie uwagi na problem emisji do atmosfery przez statki morskie związków toksycznych, takich jak m.in. NOx, SOx, cząstki stałe oraz dwutlenek węgla. Załącznik VI Konwencji MARPOL o zapobieganiu zanieczyszczaniu powietrza przez statki wymusił na armatorach stosowanie rozwiązań zmierzających do ograniczenia emisji do atmosfery tych szkodliwych substancji. Jednym z instrumentów realizacji tych wytycznych jest wprowadzony dla nowo budowanych statków projektowy współczynnik efektywności energetycznej EEDI. W artykule przedstawiono przykłady obliczeń tego współczynnika dla siłowni projektowanego kontenerowca w przypadku zasilania silników paliwem płynnym i gazowym LNG. Wskazano w ten sposób na istotny wpływ rodzaju spalanego paliwa na wielkość współczynnika.
The goal of the paper is to pay attention to the problem of emission of toxic compounds e.g. NOx, SOx and CO2 from seagoing ships to environment. The VI Amendment to MARPOL Convention concerning prevention against air pollution by seagoing ships, brought into practice in May 19th 2005, forced ship owners to use means for reduction of environment harmful substances emission to atmosphere. One of tools enabling realisation of above mentioned regulations is compulsory implementation of Energy Efficiency Design Index (EEDI). The paper presents way of its calculation, for propulsion plant of designed container ship, in case of supplying engines with heavy fuel (HFO) and LNG fuel. This way there was underlined important influence of fuel burned on value of the efficiency index, and subsequently on level of pollutants emission.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Gdyni; 2018, 105; 53-64
1644-1818
2451-2486
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Gdyni
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ dostaw LNG z USA na europejski rynek gazu ziemnego
Impact of US LNG supplies on the European natural gas market
Autorzy:
Janusz, P.
Kaliski, M.
Sikora, M. P.
Sikora, A. P.
Szurlej, A.
Powiązania:
https://bibliotekanauki.pl/articles/283577.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
gaz ziemny
LNG
rynek gazu
cena gazu
polityka energetyczna
bezpieczeństwo energetyczne
natural gas
gas market
energy policy
energy security
Opis:
W ostatnich latach światowy rynek gazu ziemnego uległ bardzo znaczącym zmianom. Dotychczas stosowane podejście w relacjach handlowych dostawca–odbiorca gazu ziemnego determinowane było sposobem dostawy tego surowca – tj. głównie za pomocą gazociągów. Powodowało to istotne napięcia polityczno-gospodarcze pomiędzy zainteresowanymi stronami. Należy także mieć na uwadze, że dostawy gazu w formie LNG mogą umocnić swoją pozycję w strukturze bilansu energetycznego Unii Europejskiej ze względu na obserwowane zmniejszające się wydobycie gazu na terenie państw należących do UE. Pomimo spadku konsumpcji gazu ziemnego w UE w ostatnich latach jego rola może wzrosnąć m.in. z powodu realizowanej polityki klimatycznej. Jednym z głównym czynników wpływających na zmiany na światowym rynku gazu jest tzw. rewolucja łupkowa jaka miała miejsce w Stanach Zjednoczonych oraz plany tego kraju, aby stać się istotnym graczem na światowym rynku gazu, dzięki wykorzystaniu technologii LNG. Do roku 2013 USA intensywnie rozbudowywały swoje zdolności importowe LNG, które stanowiły ponad 19% światowych zdolności regazyfikacyjnych. Mając na uwadze wzrost udokumentowanych zasobów gazu ziemnego w USA, zrezygnowano z realizacji kolejnych projektów terminali importowych, a w ich miejsce powstają terminale skraplające, dzięki którym USA będą eksporterem LNG, co znacząco może zmienić światowy rynek gazu ziemnego. Zgodnie z przewidywaniami do 2022 roku zdolności eksportowe LNG wzrosną o 460 mld m3/rok, z czego 82 mld m3/rok przypadać będzie na USA do Europy będą miały ceny na azjatyckim rynku gazu ziemnego, gdzie dostawy LNG odgrywają istotną rolę w zbilansowaniu zapotrzebowania na gaz. W artykule przedstawiono możliwy wpływ rewolucji łupkowej w USA na rynek gazu ziemnego w Europie. Przedstawiono uwarunkowania ekonomiczne eksportu LNG w USA. Należy jednak mieć na uwadze, że jednym z najważniejszych czynników decydujących o przekierowaniu LNG
In recent years, the global natural gas market has undergone very significant changes. The approach used so far in commercial relations between the supplier – recipient of natural gas has been determined by the way this commodity has been supplied, i.e. mainly by the use of gas pipelines. This has given rise to serious tensions of a political and economic nature between the parties involved. It is also important to keep in mind that the supplies of LNG may strengthen their position in EU energy balance due to diminishing gas production observed in the countries which are members of the EU. Despite the decline in natural gas consumption in the EU in recent years, its role may increase, i.a., due to current climate policy. One of the main factors influencing the changes in the global gas market is the so-called shale gas revolution that took place in the US and the plans of this country to become a major player in the global gas market through the use of LNG technology. By 2013, the US intensively increased its LNG import capacity, which accounted for over 19% of the global regasification capacity. Taking the increasing proven natural gas reserves in the US into account, the implementation of further import terminal projects has been abandoned and liquefying terminals are being implemented instead; this will enable the US to become an LNG exporter, which may significantly transform the global natural gas market. Following the forecasts, by 2022, the LNG export capacity will increase by 460 bln m3/y, with 82 bln m3/y from the US alone. The paper presents a potential impact of the shale gas revolution in the US on the natural gas market in Europe. It shows economic determinants for LNG export in the US. However, an account should be taken of the fact that one of the major factors that will decide on redirecting LNG to Europe is natural gas prices on the Asian market where LNG supplies are a key participant in balancing the demand for gas.
Źródło:
Polityka Energetyczna; 2017, 20, 4; 27-38
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ dostaw LNG na rozwój krajowego rynku gazu ziemnego
The influence of the LNG supplies on natural gas domestic market development
Autorzy:
Blacharski, T.
Biały, R.
Kaliski, M.
Stachowiak, B.
Szurlej, A.
Powiązania:
https://bibliotekanauki.pl/articles/394756.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
bezpieczeństwo energetyczne
gaz ziemny
rynek gazu ziemnego
dostawy LNG
energy security
natural gas
natural gas market
LNG supplies
Opis:
Po oddaniu do eksploatacji terminalu LNG w Świnoujściu Polska stała się aktywnym uczestnikiem globalnego, dynamicznie rozwijającego się rynku gazu skroplonego (LNG). W artykule przybliżono najważniejsze zmiany na europejskim rynku gazu ziemnego – zwrócono uwagę na spadek zapotrzebowania, ograniczenie wydobycia oraz przedstawiono kierunki zaopatrzenia w gaz ziemny. Następnie podjęto próbę oszacowania wpływu realizowanych inwestycji po stronie podażowej globalnego rynku LNG na europejski rynek gazowy. W tym kontekście istotne wydają się działania podejmowane w USA, gdyż już w 2016 r. przybyły z tego kraju do UE dwie dostawy LNG. Nie bez znaczenia dla europejskiego rynku gazu jest również realizowany w Japonii plan powrotu do energetyki jądrowej. Kraj ten jest największym importerem LNG na świecie, dlatego też znaczne ograniczenie importu gazu skroplonego może mieć przełożenie także na europejski rynek gazu. W dalszej części artykułu skoncentrowano się na szansach jakie wiążą się z dostawami LNG do Polski oraz przybliżono plany dalszych inwestycji w zakresie rozbudowy krajowej infrastruktury LNG. jak przedstawiono w artykule, w ciągu ostatnich lat zaobserwowano zasadnicze obniżenie się cen lNG oraz zmniejszenie zróżnicowania pomiędzy tymi cenami w poszczególnych krajach, będących importerami LNG. Przedstawiono przykładowe kierunki, gdzie może zostać zagospodarowane LNG w kraju.
Thanks to commissioning of LNG terminal in Świnoujscie, Poland has become an active participant of global, rapidly developing market of liquefied natural gas (LNG). in the article the most important changes on the European gas market were analyzed. The stress was put on decline in demand, decrease in extraction and directions of natural gas supplies. Attempt was made to estimate the influence of investments that are implemented in the global LNG production area on the European gas market. in this context, what seems to be important is tha in 2016 two deliveries of LNG came to the EU from the USA. What is more turning again toward nuclear power in Japan seems to play a vital role, as Japan is the biggest importer of LNG, and substantial reduction of lNG import to this country may bring changes on the European natural gas market. Further in the article opportunities that are associated with deliveries of LNG to Poland were presented as well as plans of investments in the field of Polish LNG infrastructure. As shown in this article, in the recent years a noticeable decline of lNG prices and reduction of the differentiation between the prices in countries importing LNG was observed. Finally, potential directions where LNG can be used in Poland were shown.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2016, 95; 253-263
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ways of adjusting the two-stroke diesel engine to be run on liquefied natural gas
Autorzy:
Giernalczyk, Mariusz
Łoński, Filip
Kaniak, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/27315925.pdf
Data publikacji:
2018
Wydawca:
STE GROUP
Tematy:
gaz ziemny
silnik dwupaliwowy Diesla
zbiornikowiec LNG
natural gas
dual fuel diesel engine
LNG carriers
Opis:
This article attempts at assessing the feasibility and validity of adjusting the two-stroke diesel engine to be fuelled by liquefied natural gas (LNG). It discusses a set of modifications introduced onto one of the ships carrying liquefied natural gas. These changes consisted in adjusting the engines of the main drive so that they can be fuelled by gas. This has been achieved by the modification of the cylinder head and fuel supply installation. Parameter results of the modified engines obtained during sea trials have been presented. Both advantages and disadvantages resulting from gas combustion have been pointed out. Ultimately, the authors of this article assess the applicability of this solution to other LNG carriers.
Źródło:
New Trends in Production Engineering; 2018, 1, 1; 317-324
2545-2843
Pojawia się w:
New Trends in Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermodynamic processes involving liquefied natural gas at the LNG receiving terminals
Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG
Autorzy:
Łaciak, M.
Powiązania:
https://bibliotekanauki.pl/articles/218953.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
LNG
skroplony gaz ziemny
egzergia
obieg termodynamiczny
terminal rozładunkowy
regazyfikacja
liquefied natural gas
exergy
thermodynamic cycle
unloading terminal
regasification
Opis:
The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations.
Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.
Źródło:
Archives of Mining Sciences; 2013, 58, 2; 349-359
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Mooring Pattern Study for Q-Flex Type LNG Carriers Scheduled for Berthing at Ege Gaz Aliaga LNG Terminal
Autorzy:
Nas, S.
Zorba, Y.
Ucan, E.
Powiązania:
https://bibliotekanauki.pl/articles/115975.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Ship Operation
LNG Carriers
LNG Terminal
Mooring Pattern Study
Q-Flex Type LNG Carriers
Ege Gaz Aliaga LNG Terminal
Transas Simulator
Bridge Simulator
Opis:
Ever growing energy industry requires larger quantities of LNG to be transported by bigger ships between terminals. Every day, new kind of large vessels created by new technologies, and these are used to trade around the globe. This is the dynamic change in shipping industry. But on the other hand these new vessels need to safely berth to existing terminals which we may accept as more static part of the trade. Thus this study born by the request of Ege Gaz Aliaga LNG Terminal management to determine if it is safe to berth to the terminal by a new breed of large LNG carrier type named as Q-Flex and Q-Max. Transas Bridge Simulator NTPRO 5000 series was used in this study for extensive experiments which had been simulated by the use of hook function. During the study, every force applied to mooring hooks and dolphins by the ship lines were divided into 3 dimensions and then measured by simulation experiments. With analysis of the data, required hook and dolphins strengths were determined for the safe mooring arrangements. Upon the completion of the study Ege Gaz Aliaga LNG Terminal became the first safe berth for Q-Flex type vessels in the Mediterranean and the Black Sea. And finally all experiments were confirmed with real life experience when the first Q-Flex type LNG carrier berthed to the Ege Gaz Aliaga LNG Terminal.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2014, 8 no. 4; 543-548
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Terminal LNG w Świnoujściu na finiszu
The Świnoujście LNG terminal about to be completed
Autorzy:
Kowacki, M.
Powiązania:
https://bibliotekanauki.pl/articles/364767.pdf
Data publikacji:
2014
Wydawca:
Nowoczesne Budownictwo Inżynieryjne
Tematy:
terminal LNG
Świnoujście
gaz ziemny
falochron osłonowy
parametry
LNG terminal
natural gas
breakwater shielding
parameters
Opis:
Budowany w Świnoujściu terminal LNG jest typowym terminalem lądowym – skroplony gaz ziemny jest pompowany z metanowców do zbiorników znajdujących się na lądzie w pobliżu portu. Tam LNG poddawany jest regazyfikacji w instalacjach lądowych, a następnie wtłaczany do systemu gazowniczego. Jak wynika z raportu przedstawionego przez wykonawcę, stan zaawansowania prac wyniósł we wrześniu 2014 r. 93,7%. Inwestycja będzie gotowa do odbioru komercyjnych dostaw gazu w 2015 r.
The Świnoujście LNG terminal currently under construction is a typical land-based terminal - liquefied natural gas is pumped from LNG methane tankers to tanks located on land near the port. LNG is regasified in land-based installations, and then pumped into the gas supply system. According to the report submitted by the contractor, the state of completion in September 2014 reached 93.7%. The project will be ready to receive commercial gas supplies in 2015.
Źródło:
Nowoczesne Budownictwo Inżynieryjne; 2014, 6; 30-33
1734-6681
Pojawia się w:
Nowoczesne Budownictwo Inżynieryjne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Techniczne i technologiczne problemy eksploatacji terminali rozładunkowych LNG
Technical and technological problems of exploitation of LNG unloading terminals
Autorzy:
Łaciak, M.
Powiązania:
https://bibliotekanauki.pl/articles/299828.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
skroplony gaz ziemny
LNG
terminal rozładunkowy
regazyfikacja
magazynowanie LNG
liquefied natural gas
unloading terminal
regasification
storage of LNG
Opis:
Wymagana infrastruktura przemysłowa LNG składa się przede wszystkim z instalacji do skraplania gazu, terminala załadunkowego, tankowców (metanowców) oraz terminala rozładunkowego, w którym następuje regazyfikacja do stanu lotnego. Zadaniem terminala rozładunkowego LNG jest odbiór ładunku skroplonego gazu ziemnego ze zbiorników metanowca, aby następnie, zgodnie z ustalonym harmonogramem eksploatacji, przetworzyć ciekły LNG w fazę gazową i pod określonym ciśnieniem wprowadzić gaz do systemu przesyłowego. W terminalu rozładunkowym przeprowadza się kilka podstawowych operacji: rozładowanie, magazynowanie, przepompowywanie i sprężanie oraz regazyfikację LNG. Rozładowanie LNG odbywa się ze zbiorników metanowca cumującego do specjalnie wyposażonego nadbrzeża. Na nadbrzeżu zainstalowana jest stacja rozładowania, wyposażona w tzw. ramiona rozładowcze oraz system rurociągów do transportu LNG. Magazynowanie LNG, zazwyczaj na krótki okres, odbywa się w specjalnie skonstruowanych zbiornikach w kriogenicznym zakresie temperatur. Regazyfikacja LNG polega na tym, że skroplony gaz ziemny jest podgrzewany w specjalnych urządzeniach (odparowywacze, regazyfikatory) i przechodzi w fazę gazową o temperaturze na wyjściu rzędu kilku stopni. Ciśnienie gazu na wyjściu z regazyfikatora jest z góry ustalone w korelacji do wymagań systemu gazowniczego. Regazyfikacja pod wysokim ciśnieniem stwarza możliwość utrzymania procesu w fazie nadkrytycznej, w której zachodzi lepsza wymiana ciepła, przy jednoczesnym uniknięciu komplikacji eksploatacyjnych. Terminal rozładunkowy podłączony jest do sieci gazowej, którą przesyłany jest gaz ziemny po wcześniejszym ustaleniu parametrów jakościowych wtłaczanego do sieci gazu (ewentualne mieszanie gazu).Nie mniej istotne znaczenie mają zasady i systemy bezpieczeństwa stosowane w terminalach LNG. W artykule przedstawiono procesy technologiczne związane z eksploatacją terminali: od rozładunku LNG w fazie ciekłej do jego odbioru w fazie gazowej przez system przesyłowy. Omówiono cztery główne operacje tworzące podstawową linię technologiczną, na której ciekły LNG poddawany jest fizycznym przemianom, nie powodującym jednak istotnych zmian w jego składzie chemicznym i właściwościach. Opisane zostały również stosowane metody regazyfikacji LNG oraz problemy bezpieczeństwa technicznego w terminalach.
The required LNG industrial infrastructure consists primarily of liquefaction instalation, loading terminal, methane ships and unloading terminal, in which is making the regasification from liquid to gas phase. The task of unloading LNG terminal is to receive the cargo of liquefied natural gas from methane ship tanks, and then, according to the schedule of operation - to process liquid LNG to the gas phase and at a certain pressure to introduce gas into the transmission system. In the unloading terminal is carried out a few basic operations: unloading, storage, pumping and compression, and regasification of LNG. The discharge of LNG - from the methane ship tanks specially equipped for berthing quays. On the waterfront is installed on the discharge station, equipped with the unloading arms and a system of pipelines to transport LNG. Storage of LNG - usually for a short period of time in specially constructed tanks at cryogenic temperatures. Regasification of LNG - liquefied natural gas is heated in special equipment (vaporizers) and goes into the gas phase at a temperature at the exit of a few degrees. The gas pressure at the outlet from vaporizers is predetermined in correlation to the requirements of the gas system. Regasification at high pressure makes it possible to maintain the process in the supercritical phase, in which heat transfer is better, while avoiding the complications of exploitation. Unloading terminal is connected to the gas network, which is transporting a natural gas after having established the quality parameters supplied to the gas network (possible mixing of gases). No less important are the rules and safety systems used in LNG terminals. The paper presents the technological processes involved in the operation of terminals, from the unloading of LNG in a liquid phase to its reception in the gas phase by the transmission system. The four main operations forming the core production line on which the LNG liquid is subjected to physical changes, but causes no significant changes in its chemical composition and properties were presented. There were also presented the methods used to LNG regasification and technical security issues at terminals.
Źródło:
Wiertnictwo, Nafta, Gaz; 2011, 28, 3; 507-520
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Śródlądowe terminale LNG i ich możliwa lokalizacja na rzece Odrze
LNG inland terminals and their possible location on the river Oder
Autorzy:
Hapanionek, N.
Sobkowicz, P.
Ślączka, W.
Powiązania:
https://bibliotekanauki.pl/articles/310220.pdf
Data publikacji:
2017
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
LNG
gaz ziemny
skroplony gaz ziemny
terminal LNG
paliwo alternatywne
infrastruktura paliw alternatywnych
Odra
LNG terminal
liquified natural gas
natural gas
alternative fuel
infrastructure of alternative fuels
Oder River
Opis:
W artykule omówiony został problem wyznaczenia lokalizacji śródlądowych terminali skroplonego gazu ziemnego (LNG) na rzece Odrze. Przedstawiono główne regulacje prawne dotyczące rozwoju infrastruktury paliw alternatywnych w transporcie morskim i śródlądowym. Dokonano charakterystyki budowy i eksploatacji statków śródlądowych służących do przewozu LNG oraz przenośnych zbiorników do transportu gazu LNG. Następnie po przeprowadzeniu analizy warunków nawigacyjnych na rzece Odrze, dokonano próby wyznaczenia możliwych lokalizacji terminali LNG wzdłuż rzeki. Głównymi kryteriami podczas wyznaczania lokalizacji był dostęp do infrastruktury drogowej oraz potencjalni kontrahenci, którzy mogliby być zainteresowani eksploatacją terminali LNG.
The article discusses the problem of determining the location of inland liquefied natural gas (LNG) terminals on the Oder River. The article shows the main legal regulations concerning the development of the infrastructure of alternative fuels in maritime transport and inland waterways. The article describe the characteristics of the construction and operation of inland vessels intended for LNG transport and portable LNG tanks. After the analysis of navigation conditions on the Oder River, attempts were made to identify possible locations for LNG terminals along the river. The main criteria in determining the location was access to road infrastructure and potential contractors who might be interested in the operation of LNG terminals.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2017, 18, 6; 1383-1388, CD
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sprężony i skroplony gaz ziemny jako alternatywa dla paliw ropopochodnych wykorzystywanych w transporcie
Compressed and liquefied natural gas as an alternative for petroleum derived fuels used in transport
Autorzy:
Dorosz, P.
Powiązania:
https://bibliotekanauki.pl/articles/283270.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
gaz ziemny
CNG
LNG
paliwa
zasilanie pojazdu
natural gas
vehicle fuel
Opis:
Transport drogowy oraz morski oparty jest głównie na wykorzystaniu paliw ropopochodnych, tj. ropie naftowej, benzynie oraz LPG (Liquefied Petroleum Gas). Światowe zasoby ropy naftowej stale się kurczą i przewiduje się, ze wystarczą na kilkadziesiąt lat. Ponadto stale zwiększające się obostrzenia dotyczące emisji spalin powodują, że silniki są coraz bardziej skomplikowane, co przekłada się na wyższy koszt oraz niższą niezawodność. Dlatego też zauważalny jest trend w celu poszukiwania alternatywnych paliw do zasilania pojazdów. Obecnie można wyróżnić trzy kierunki rozwoju technologii: zasilanie energią elektryczną, wodorem lub gazem ziemnym. Ze względu na fakt niskiej pojemności baterii, co przekłada się na niski zasięg pojazdów i poważne trudności z magazynowaniem wodoru oraz niską efektywność termodynamiczną ogniw, najbardziej perspektywicznym kierunkiem wydaje się zasilanie pojazdów gazem ziemnym. Zasoby gazu ziemnego są znacznie większe w porównaniu do ropy naftowej. Ponadto spalanie gazu ziemnego praktycznie eliminuje emisję szkodliwych dla zdrowia tlenków azotu, siarki oraz cząstek stałych. Jest on również paliwem powszechnie dostępnym, ze względu na znaczne pokrycie terytorium Polski rurociągami. Jednakże ze względu na niską gęstość energii gazu ziemnego w warunkach otoczenia, wymaga on specjalnego przechowywania – może być magazynowany jako gaz sprężony do ciśnienia ponad 200 barów (CNG – Compressed Natural Gas) lub w postaci skroplonej (LNG – Liquefied Natural Gas). Pozwala to na zwiększenie gęstości energii do poziomów porównywalnych od oleju napędowego i benzyny. Dodatkowym zagadnieniem jest możliwość wykorzystania chłodu pochodzącego z odparowania LNG do celów klimatyzacyjnych lub chłodniczych. Jest to jednak uzasadnione w przypadku transportu ciężkiego, gdzie strumień gazu jest relatywnie wysoki.
The road and maritime transport is mainly based on the petroleum fuels as diesel, gasoline and LPG (Liquefied Petroleum Gas). Due to their harmful effect on health and the shrinking resources, new fuels are sought. At present we can observe three main directions: vehicles powered by electricity, hydrogen and natural gas. In the case of electricity, problems are still present with the capacity of the batteries and, hence, the low range of the vehicles. The use of the hydrogen is difficult due to storage problems and the low thermodynamic efficiency of the fuel cells. That is why natural gas can be the best alternative fuel and be a good way to reduce pollution such as: nitrogen oxides, sulfur oxides and solid particles. Moreover, natural gas is easily available by the gas pipelines. However, natural gas under ambient conditions is characterized by low energy density. That is the reason why it must be stored as gas pressurized over 200 bar (CNG – Compressed Natural Gas) or as the liquid gas (LNG – Liquefied Natural Gas). This kind of storage allows the energy density to be increased to the level comparable with diesel or petroleum. An additional aspect may be cold energy recovery from the evaporating LNG. The cool can be used in air conditioning or in refrigeration. That solution is especially interesting in heavy transport, where the streams of liquid gas are relatively high.
Źródło:
Polityka Energetyczna; 2018, 21, 1; 85-97
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies