Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gas accumulation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Application of seismic methods to identify potential gas concentration zones at the Zechstein Limestone Level in the "Rudna" mining area, SW Poland
Autorzy:
Dec, J.
Pietsch, K.
Marzec, P.
Powiązania:
https://bibliotekanauki.pl/articles/191658.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
3D seismics
seismic modelling
gas accumulation zones
Zechstein Limestone
"Rudna" copper mine
SW Poland
Opis:
A block development operation at the "Rudna" copper mine (KGHM Polska Miedź S.A.) encountered a "compressed gas trap" that caused the ejection of fragmented rock material into a drift. Faced with a new threat of gas ejection the mine needed to find methods to identify potential gas concentration zones prior to any further exploration work. Surface seismic surveying was chosen as a widely-accepted standard method of investigating rockmass structure and tectonics and pinpointing natural gas deposits. An area of one square kilometre was selected directly above the ejection site, a 3D seismic survey, known as Duża Wólka 3D, was performed and a survey well S-421A was drilled. The objective was to investigate the overall rock structure, especially the structure of Zechstein and top Rotliegendes formations, as well as to attempt identifying anomalous zones, which could be linked with the gas saturation of Ca1 dolomites, on the 3D seismic image at the P1 level (Zechstein/ Rotliegendes boundary). An interpretation of multi-scenario seismic modelling of the recorded data helped to: – recognize the structure and tectonics of the area, including minor faults cutting through the top-level Rotliegendes formations and floor-level Zechstein formations. Such faults could constitute migration channels for Carboniferous-period gases, – locate zones with nearly zero-reflection amplitude at the surface of the top-level Rotliegendes (P1 seismic boundary), which would suggest a reduction of elastic parameters of the Ca1 dolomite. This reduction could be linked to an increased porosity and fracturing of the dolomite and its saturation with gas (a reduction of the seismic wavelet propagation velocity). Credibility of this interpretation is already partly corroborated by data from wells drilled in the Zechstein limestone by the mine. The paper presents the first in the world attempt to use the surface seismic survey for location of zones with small gas concentration in porous rocks at the Zechstein/Rotliegendes boundary. Such zones should not be identified with gas pools that occur in the Zechstein Limestone (Ca1) in the area of the Fore-Sudetic Monocline.
Źródło:
Annales Societatis Geologorum Poloniae; 2011, 81, No 1; 63-78
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Seismic modelling as a tool for optimization of downhole microseismic monitoring array
Autorzy:
Pasternacki, A.
Święch, E.
Maćkowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/184420.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
gas accumulation
shale formation
detection
Opis:
Hydraulic fracturing processes employed to release natural gas accumulations trapped in shale formation causes cracks in fractured media occurred as microseismic events. Those events can be detected with either surface or downhole monitoring technique. One of the advantages of downhole microseismic monitoring technique is the relative high detection moment magnitude threshold, compared to surface and quasi surface arrays (Maxwell 2014). The epicenters of detected microseismic events are located with certain accuracies (Eisner et al. 2010). The uncertainties in location are mainly caused by simplification of a very complex geological structure, geometry of the monitoring network, arrival time pick uncertainty and naturally selected processing method. The correct assessment of macroseismic events locations with their uncertainties is the key to proper interpretation of the results. In this study, authors present an analysis of optimizing geometry of the downhole microseismic monitoring array minimalizing location error and taking into account level of detectability. To achieve this goal, several different downhole array geometries were tested. The study is located in Northern Poland where active exploration of shale gas deposits takes place. In the investigated area three wells are located, one vertical (W-1) and two horizontal, which have been drilled in the same azimuths but different direction and slightly different depths (W3H – deeper and W2Hbis – shallower). As there is possibility that these wells will be stimulated in close period of time, the chosen array placed in the monitoring well should be optimal for depths. As Eisner stated in his work, best downhole array should have to consist of 3C sensors placed below and above of the planed depths of stimulation to reduce uncertainty of the event locations (Eisner et al. 2009). Both treatment wells have relatively high horizontal distance, which results with high distance between receivers and possible events (in ranges between 500 m to 1700 m), which is quite high compared to literature examples (Warpiński & Natl 1994). To perform this analysis, GeoTomo MiVu TM Microseismic Processing System was used, which includes a Vecon modeling engine. This software has been granted to AGH UST for research and educational purposes. The passive seismic modelling was done with GRTM method (generalized reflection transmission coefficients) (Kennet 1980). This kind of mixed procedure is relatively fast to perform and allows checking many different configurations of downhole array. Based on the 3D seismic survey provided by PGNiG in the investigated area authors have decided to use simple layered velocity model which sufficiently describes the local geological conditions. The synthetic microseismic events were located using TGS (Traveltime Grid Search) algorithm available in MiVu software. Based on presented analysis authors were able to choose optimal geometry of downhole micro seismic array for both prospective intervals which fulfill condition of being good compromise between costs and location accuracy of possible events.
Źródło:
Geology, Geophysics and Environment; 2016, 42, 1; 112-113
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zasoby prognostyczne - nieodkryty potencjał gazu ziemnego w polskim basenie czerwonego spągowca
Prognostic gas reserves - undiscovered potential of gas in the Polish Rotliegend basin
Autorzy:
Burzewski, W.
Górecki, W.
Maćkowski, T.
Papiernik, B.
Reicher, B.
Powiązania:
https://bibliotekanauki.pl/articles/183413.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
czerwony spągowiec
zasoby prognostyczne gazu ziemnego
strefy akumulacji
Rotliegend
prognostic gas resources
accumulation zones
Opis:
The paper presents results of estimation of natural gas prognostic resources in the Polish part of the Rotliegend basin and indicates zones of possible accumulation. Generation potential of Carboniferous source rocks was estimated using the genetic method. Quantity of the free gas introduced into the reservoir was calculated using the differential mass balance method. The final obtained value of the accumulation potential is equivalent to prognostic resources.
Źródło:
Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie; 2009, 35, 2/1; 123-128
0138-0974
Pojawia się w:
Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies