Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gangue identification" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analyzing the identification mechanism of graphite and clay minerale in coal and gangue using X-rays
Autorzy:
Yin, Jianqiang
Zhu, Hongzheng
Zhu, Jinbo
Zeng, Qiuyu
Li, Liansheng
Yang, Chenguang
Powiązania:
https://bibliotekanauki.pl/articles/2146849.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
X-rays
coal gangue identification
photoelectric separation
grayscale model
pixel volume
Opis:
Three types of chelating depressants were studied for chalcopyrite/pyrite separation, including S-S, S-O, and O-O types, via density functional theory calculations and microflotation. The calculation results indicate that the depressant’s chelating atoms have large coefficient and great activity according to the molecular frontier orbital (HOMO and LUMO) and the orbital coefficients. For S-S type of depressant, S atom in both keto or enol forms won’t affect their HOMO and LUMO patterns and the orbital contributions. For S-O type, the presence of N atom in the ring structure of a molecular will increase the reactivity of O-Cu while weak S-Cu. For O-O type, the electron supply capacity of benzene ring is higher than strain chain, and atom N in strain chain increased their electron supply capacity. The microflotation results basically confirmed the prediction based on the calculation. The simulation results demonstrate that the interaction of a depressant with metals and minerals are affected obviously by the spatial structure and electronic structure of an atom in its molecular.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 1; 24--36
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The identification of coal and gangue and the prediction of the degree of coal metamorphism based on the EDXRD principle and the PSO-SVM model
Identyfikacja węgla i skały płonnej oraz prognozowanie stopnia metamorfizmu węgla w oparciu o zasadę EDXRD i model PSO-SVM
Autorzy:
Zhao, Yanqiu
Wang, Shuang
Guo, Yongcun
Cheng, Gang
He, Lei
Wang, Wenshan
Powiązania:
https://bibliotekanauki.pl/articles/2173844.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
coal identification
gangue identification
X-ray diffraction
energy dispersive
metamorphism degree
PSO-SVM
identyfikacja węgla
identyfikacja skały płonnej
dyfrakcja rentgenowska
dyspersja energii
stopień metamorfizmu
Opis:
In order to improve the utilization rate of coal resources, it is necessary to classify coal and gangue, but the classification of coal is particularly important. Nevertheless, the current coal and gangue sorting technology mainly focus on the identification of coal and gangue, and no in-depth research has been carried out on the identification of coal species. Accordingly, in order to preliminary screen coal types, this paper proposed a method to predict the coal metamorphic degree while identifying coal and gangue based on Energy Dispersive X-Ray Diffraction (EDXRD) principle with 1/3 coking coal, gas coal, and gangue from Huainan mine, China as the research object. Differences in the phase composition of 1/3 coking coal, gas coal, and gangue were analyzed by combining the EDXRD patterns with the Angle Dispersive X-Ray Diffraction (ADXRD) patterns. The calculation method for characterizing the metamorphism degree of coal by EDXRD patterns was investigated, and then a PSO-SVM model for the classification of coal and gangue and the prediction of coal metamorphism degree was developed. Based on the results, it is shown that by embedding the calculation method of coal metamorphism degree into the coal and gangue identification model, the PSO-SVM model can identify coal and gangue and also output the metamorphism degree of coal, which in turn achieves the purpose of preliminary screening of coal types. As such, the method provides a new way of thinking and theoretical reference for coal and gangue identification.
W celu poprawy stopnia wykorzystania zasobów węgla konieczna jest klasyfikacja węgla i skały płonnej, ale to klasyfikacja węgla jest szczególnie ważna. Niemniej jednak obecna technologia separacji węgla i skały płonnej koncentruje się głównie na identyfikacji węgla i skały płonnej, ale nie przeprowadzono dogłębnych badań dotyczących identyfikacji gatunków węgla. W związku z tym, w celu wstępnego przesiewu rodzajów węgla, w niniejszym artykule zaproponowano metodę przewidywania stopnia metamorfizmu węgla przy identyfikacji węgla i skały płonnej w oparciu o zasadę dyfrakcji rentgenowskiej z dyspersją energii (EDXRD) z 1/3 węglem koksującym, węglem gazowym i skałą płonną z kopalni Huainan w Chinach jako obiektem badawczym. Różnice w składzie fazowym 1/3 węgla koksowego, węgla gazowego i skały płonnej analizowano przez połączenie wzorców EDXRD z wzorcami dyfrakcji rentgenowskiej z dyspersją kątową (ADXRD). Zbadano metodę obliczeniową charakteryzującą stopień metamorfizmu węgla za pomocą wzorców EDXRD, a następnie opracowano model PSO-SVM do klasyfikacji węgla i skały płonnej oraz przewidywania stopnia metamorfizmu węgla. Na podstawie uzyskanych wyników wykazano, że poprzez wbudowanie metody obliczania stopnia metamorfizmu węgla w model identyfikacji węgla i skały płonnej, model PSO-SVM może identyfikować węgiel i skałę płonną, a także wyprowadzać stopień metamorfizmu węgla, co z kolei spełnia cel wstępnego przesiewania rodzajów węgla. Jako taka, metoda ta zapewnia nowy sposób myślenia i teoretyczne odniesienie do identyfikacji węgla i skał płonnych.
Źródło:
Gospodarka Surowcami Mineralnymi; 2022, 38, 2; 113--129
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study on the influence of particle size on the identification accuracy of coal and gangue
Badanie wpływu wielkości cząstek na dokładność identyfikacji węgla i skały płonnej
Autorzy:
Li, Xin
Wang, Shuang
He, Lei
Luo, Qisheng
Powiązania:
https://bibliotekanauki.pl/articles/2203300.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
particle size
gray feature
texture feature
support vector machine
coal identification
gangue identification
wielkość cząstek
cecha szarości
cecha tekstury
maszyna wektorów pomocniczych
identyfikacja węgla
identyfikacja skały płonnej
Opis:
In order to explore the impact of coal and gangue particle size changes on recognition accuracy and to improve the single particle size of coal and gangue identification accuracy of sorting equipment, this study established a database of different particle sizes of coal and gangue through image gray and texture feature extraction, using a relief feature selection algorithm to compare different particle size of coal and gangue optimal features of the combination, and to identify the points and particle size of coal and gangue. The results show that the optimal features and number of coal and gangue are different with different particle sizes. Based on visible-light coal and gangue separation technology, the change of coal and gangue particle size cause fluctuations in the recognition accuracy, and the fluctuation of recognition accuracy will gradually decrease with increases in the number of features. In the process of particle size classification, if the training model has a single particle size range, the recognition accuracy of each particle size range is low, with the highest recognition accuracy being 98% and the average recognition rate being only 97.2%. The method proposed in this paper can effectively improve the recognition accuracy of each particle size range. The maximum recognition accuracy is 100%, the maximum increase is 4%, and the average recognition accuracy is 99.2%. Therefore, this method has a high practical application value for the separation of coal and gangue with single particle size.
W celu zbadania wpływu zmian wielkości cząstek węgla i skały płonnej na dokładność rozpoznawania oraz poprawienia dokładności identyfikacji pojedynczych cząstek węgla i skały płonnej przez urządzenia sortujące, w ramach tej pracy utworzono bazę danych różnych rozmiarów cząstek węgla i skały płonnej za pomocą obrazów szarych i ekstrakcję cech tekstury przy użyciu algorytmu wyboru cech reliefowych w celu porównania różnych rozmiarów cząstek węgla i skały płonnej przy optymalnych cechach kombinacji oraz identyfikacji punktów i wielkości cząstek węgla i skały płonnej. Wyniki pokazują, że optymalne liczby cech węgla i skały płonnej są różne dla różnych rozmiarów cząstek. W oparciu o technologię separacji węgla i skały płonnej w świetle widzialnym, zmiana wielkości cząstek węgla i skały płonnej powoduje fluktuacje dokładności rozpoznawania, a te z kolei będą stopniowo zmniejszać się wraz ze wzrostem liczby cech. W procesie klasyfikacji wielkości cząstek, jeśli model uczący ma jeden zakres wielkości cząstek, dokładność rozpoznawania każdego zakresu wielkości cząstek jest niska, przy czym najwyższa dokładność rozpoznawania wynosi 98%, a średni wskaźnik rozpoznawania wynosi tylko 97,2%. Metoda zaproponowana w tym artykule może skutecznie poprawić dokładność rozpoznawania każdego zakresu wielkości cząstek. Maksymalna dokładność rozpoznawania wynosi 100%, maksymalny wzrost to 4%, a średnia dokładność rozpoznawania to 99,2%. Dlatego ta metoda ma dużą praktyczną wartość użytkową do oddzielania węgla i skały płonnej według rozmiaru pojedynczej cząstki.
Źródło:
Gospodarka Surowcami Mineralnymi; 2023, 39, 1; 109--129
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies