Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gęstość punktów" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Measurement point density and measurement methods in determining the geometric imperfections of shell surfaces
Autorzy:
Kocierz, R.
Rębisz, M.
Ortyl, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/106883.pdf
Data publikacji:
2018
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
cooling towers
geometrical imperfection
minimal point density
deformation
wieże chłodnicze
niedoskonałość geometryczna
gęstość punktów
odkształcenie
Opis:
In geodetic measurements of deformations in shell cooling towers, an important factor is to optimize the number of points representing the exterior surface of the shell. The conducted analyses of damage to such structures proved that cooling towers exhibited shell deformation consisting of irregular vertical waves (three concavities and two convexities), as well as seven horizontal waves. On this basis, it is claimed that, in accordance with the Shannon theorem, the correct representation of the generated waves requires the measurement of the cooling tower shell in a minimum of 12 vertical and 14 horizontal sections. Such density of the points may not be sufficient to represent local imperfections of the shell. The article presents the results of test measurements and their analysis, which were conducted to verify the assumptions as to the optimal number of measurement points for the shell of a cooling tower. The evaluation was based on a comparative analysis of the data obtained by the Terrestrial Laser Scanning (TLS) method, creating a very detailed model of geometric imperfections in an actual cooling tower with a height of 100 m. Based on the data obtained by the TLS method, point grids of various density were generated. An additional measurement of the cooling tower shell deformation was performed using a precise electronic total station with reflectorless measurement option. Therefore, it was possible to assess the accuracy of measurements by laser scanning in relation to measurements obtained by reflectorless total stations.
Źródło:
Reports on Geodesy and Geoinformatics; 2018, 105; 19-28
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of the Density of Source Data on a Volume Estimation Using DEM
Wpływ gęstości danych źródłowych na określenie objętości przy użyciu DEM
Autorzy:
Sokol, S.
Liptak, M.
Bajtala, M.
Powiązania:
https://bibliotekanauki.pl/articles/319377.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
volume
digital elevation model (DEM)
density of points
interpolation method
relative error
objętość
numeryczny model terenu
gęstość punktów
metoda interpolacji
błąd względny
Opis:
Digital elevation model (DEM) represents an efficient tool for a number of engineering applications. However, decisive for the DEM application is its accuracy, which depends on various factors. The main factors include the surface roughness, the interpolation algorithm, and the accuracy, density and distribution of the source data. This study is devoted to investigating the effect of the source data density on the volume calculation using the grid based DEM. This investigation is provided on the basis of the theoretical surfaces, which are expressed by means of a known mathematical function of the plane coordinates, and also on the experimentally measured surfaces using terrestrial laser scanning. DEMs using data with density from several centimetres to 1 m and using three different interpolation methods were generated and volumes calculated.
Cyfrowy model terenu (digital elevation model – DEM) stanowi skuteczne narzędzie do wielu zastosowań inżynierskich. Decydującym czynnikiem przemawiającym za DEM jest jej dokładność, która zależy od wielu czynników. Głównymi czynnikami są chropowatość powierzchni, algorytm interpolacji oraz dokładność, gęstość i rozkład danych źródłowych. Niniejszy artykuł jest poświęcony zbadaniu wpływu gęstości danych źródłowych na obliczanie objętości przy użyciu siatki opartej na DEM. Badanie to jest przeprowadzone bazując na fundamentach teoretycznych, które wyrażone są przez funkcję matematyczną współrzędnych płaszczyzny, jak również na eksperymentalnie zmierzonych powierzchni przy użyciu naziemnego skaningu laserowego. DEM używająca danych o gęstości od kilku centymetrów do 1 m oraz stosująca trzy różne metody interpolacji została wygenerowana a objętość obliczona.
Źródło:
Inżynieria Mineralna; 2014, R. 15, nr 1, 1; 39-45
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gęstość chmury punktów pochodzącej z mobilnego skanowania laserowego
Density of point clouds in mobile laser scanning
Autorzy:
Warchoł, A.
Powiązania:
https://bibliotekanauki.pl/articles/130766.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
mobilny skaning laserowy
chmura punktów
gęstość
mobile laser scanning
point clouds
density
Opis:
Dzięki intensywnemu rozwojowi technologia LiDAR (Light Detection And Ranging) jest w ostatnim czasie co raz bardziej popularną metodą pozyskiwania informacji przestrzennej. Rejestrowanie przestrzeni za pomocą skanerów laserowych zamontowanych na mobilnej platformie łączy w sobie szybkość pozyskiwania gęstej chmury punktów z dokładnościami centymetrowymi. Jest to więc bardzo skuteczne rozwiązanie do pozyskiwania informacji o obiektach wydłużonych (liniowych), a także ich otoczeniu. Wynikowa chmura punktów, aby mogła być wykorzystywana do poszczególnych zastosowań, musi spełniać określone parametry, zarówno dokładnościowe jak i jakościowe. Zwykle zamawiający określa wartości parametrów, które w projekcie należy uzyskać. O ile w kwestii parametrów dokładnościowych nie pojawiają się rozbieżności co do metodyki, o tyle w przypadku gęstości chmury punktów sytuacja nie jest jednoznaczna. Ze względu na specyfikę danych MLS (Mobile Laser Scanning), nie można tu zastosować bezpośrednio rozwiązań z ALS (Airborne Laser Scanning). Podawanie również gęstości chmury punktów jako ilorazu liczby punktów przez „płaskie” pole powierzchni powstające z rzutu granicy projektu na płaszczyznę, powoduje mylne wrażenie o gęstości chmury punktów na zeskanowanych obiektach. A właśnie gęstość chmury punktów na obiektach jest kluczowym kryterium w kwestii jej przydatności do dalszego przetwarzania i wykorzystania (np. możliwość rozpoznania obiektów na chmurze). W niniejszym artykule, na trzech polach testowych, zbadano trzy różne metody obliczania gęstości zbioru danych LiDAR dzieląc liczbę punktów: najpierw przez „płaskie” pole powierzchni, następnie przez „trójwymiarowe”, a kończąc na metodzie voxelowej. Najbardziej wiarygodną wydaje się być metoda voxelowa, która oprócz samych lokalnych wartości gęstości, przedstawia ich przestrzenny rozkład.
The LiDAR (Light Detection And Ranging) technology is becoming a more and more popular method to collect spatial information. The acquisition of 3D data by means of one or several laser scanners mounted on a mobile platform (car) could quickly provide large volumes of dense data with centimeter-level accuracy. This is, therefore, the ideal solution to obtain information about objects with elongated shapes (corridors), and their surroundings. Point clouds used by specific applications must fulfill certain quality criteria, such as quantitative and qualitative indicators (i.e. precision, accuracy, density, completeness).Usually, the client fixes some parameter values that must be achieved. In terms of the precision, this parameter is well described, whereas in the case of density point clouds the discussion is still open. Due to the specificities of the MLS (Mobile Laser Scanning), the solution from ALS (Airborne Laser Scanning) cannot be directly applied. Hence, the density of the final point clouds, calculated as the number of points divided by "flat" surface area, is inappropriate. We present in this article three different ways of determining and interpreting point cloud density on three different test fields. The first method divides the number of points by the "flat" area, the second by the "three-dimensional" area, and the last one refers to a voxel approach. The most reliable method seems to be the voxel method, which in addition to the local density values also presents their spatial distribution.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 149-161
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies