Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy rule" wg kryterium: Temat


Tytuł:
On wavelet based enhancing possibilities of fuzzy classification methods
Autorzy:
Lilik, Ferenc
Solecki, Levente
Sziová, Brigita
Kóczy, László T.
Nagy, Szilvia
Powiązania:
https://bibliotekanauki.pl/articles/384751.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fuzzy classification
wavelet analysis
fuzzy rule interpolation
structural entropy
Opis:
If the antecedents of a fuzzy classification method are derived from pictures or measured data, it might have too many dimensions to handle. A classification scheme based on such data has to apply a careful selection or processing of the measured results: either a sampling, re‐ sampling is necessary. or the usage of functions, transfor‐ mations that reduce the long, high dimensional observed data vector or matrix into a single point or to a low num‐ ber of points. Wavelet analysis can be useful in such cases in two ways. As the number of resulting points of the wavelet ana‐ lysis is approximately half at each filters, a consecutive application of wavelet transform can compress the me‐ asurement data, thus reducing the dimensionality of the signal, i.e., the antecedent. An SHDSL telecommunication line evaluation is used to demonstrate this type of appli‐ cability, wavelets help in this case to overcome the pro‐ blem of a one dimensional signal sampling. In the case of using statistical functions, like mean, variance, gradient, edge density, Shannon or Rényi en‐ tropies for the extraction of the information from a pic‐ ture or a measured data set, and they don not produce enough information for performing the classification well enough, one or two consecutive steps of wavelet analy‐ sis and applying the same functions for the thus resulting data can extend the number of antecedents, and can dis‐ till such parameters that were invisible for these functi‐ ons in the original data set. We give two examples, two fuzzy classification schemes to show the improvement caused by wavelet analysis: a measured surface of a com‐ bustion engine cylinder and a colonoscopy picture. In the case of the first example the wear degree is to be deter‐ mine, in the case of the second one, the roundish polyp content of the picture. In the first case the applied statisti‐ cal functions are Rényi entropy differences, the structural entropies, in the second case mean, standard deviation, Canny filtered edge density, gradients and the entropies. In all the examples stabilized KH rule interpolation was used to treat sparse rulebases.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 2; 32-41
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards a linguistic description of dependencies in data
Autorzy:
Batyrshin, I.
Wagenknecht, M.
Powiązania:
https://bibliotekanauki.pl/articles/908041.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
fuzzy approximation
linguistic term
fuzzy rule
genetic algorithm
Opis:
The problem of a linguistic description of dependencies in data by a set of rules Rk: "If X is Tk then Y is Sk" is considered, where Tk's are linguistic terms like SMALL, BETWEEN 5 AND 7 describing some fuzzy intervals Ak. Sk's are linguistic terms like DECREASING and QUICKLY INCREASING describing the slopes pk of linear functions yk=pkx +qk approximating data on Ak. The decision of this problem is obtained as a result of a fuzzy partition of the domain X on fuzzy intervals Ak, approximation of given data {xi,yi}, i=1,...,n by linear functions yk=pkx+qk on these intervals and by re-translation of the obtained results into linguistic form. The properties of the genetic algorithm used for construction of the optimal partition and several methods of data re-translation are described. The methods are illustrated by examples, and potential applications of the proposed methods are discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 3; 391-401
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic generation of fuzzy inference systems using heuristic possibilistic clustering
Autorzy:
Viattchenin, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/384377.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
possibilistic clustering
fuzzy cluster
typical point
tolerance threshold
fuzzy rule
Opis:
The interpretability and flexibility of fuzzy classification rules make them a popular basis for fuzzy controllers. Fuzzy control methods constitute a part of the areas of automation and robotics. The paper deals with the method of extracting fuzzy classification rules based on a heuristic method of possibilistic clustering. The description of basic concepts of the heuristic method of possibilistic clustering based on the allotment concept is provided. A general plan of the D-AFC(c)-algorithm is also given. A method of constructing and tuning of fuzzy rules based on clustering results is proposed. An illustrative example of the method's application to the Anderson's Iris data is carried out. An analysis of the experimental results is given and preliminary conclusions are formulated.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 3; 36-44
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extracting fuzzy classifications rules from three - way data
Autorzy:
Kacprzyk, J.
Owsinski, J. W.
Viattchenin, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/385102.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
three-way data
possibilistic clustering
fuzzy cluster
typical point
fuzzy rule
Opis:
The paper deals in the conceptual way with the problem of extracting fuzzy classification rules from the three-way data meant in the sense of Sato and Sato [7]. A novel technique based on a heuristic method of possibilistic clustering is proposed. A description of basic concepts of a heuristic method of possibilistic clustering based on concept of an allotment is provided. A preprocessing technique for three-way data is shown. An extended method of constructing fuzzy classification rules based on clustering results is proposed. An illustrative example of the method’s application to the Sato and Sato’s data [7] is provided. An analysis of the experimental results obtained with some conclusions are given.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2014, 8, 2; 47-57
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
IoT & WSN based Smart Precision Agriculture
Autorzy:
Jayashree, M. M.
Sangeetha, S.
Powiązania:
https://bibliotekanauki.pl/articles/1193585.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Fuzzy Rule-base
Internet of Things
IoT
Prediction
WSN
Opis:
Now a days, agriculture plays a vital role in Indian economy. Agriculture gets destroyed due to fewer numbers of workers and animal intrusions in the field. So, Agricultural lands are becoming plots. The main objective is to improve the sustainable agriculture by enhancing the technology using wireless sensor technology. Wireless sensor networks and IoT plays a major role in Smart agriculture. IoT attach the sensed values with the internet. WSN involves two levels of prediction such as climate and crop. Temperature, Humidity and pH sensors are used to obtain the characteristic data from the land. Based on temperature and humidity, climate is predicted using fuzzy rules. From the predicted climate and using pH value of the soil, the crop to be grown is predicted. The corresponding decisions sent to the respective land owner’s. The sensors are co-ordinated using the GPS and are connected to the base station in an ad-hoc network using WLAN.
Źródło:
World Scientific News; 2016, 41; 261-266
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of economic activity of the company on the base of fuzzy inference rules
Autorzy:
Chojnacki, A.
Borzęcka, H.
Powiązania:
https://bibliotekanauki.pl/articles/92954.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
fuzzy sets theory
fuzzy logic
fuzzy rule of conclusion
linguistic variables
fuzzy model of assessment
Opis:
The article presents the assessment of companies efficiency, the idea based on the fuzzy set theory and fuzzy logic. Relevant financial measures are selected by experts and auditors. Variables of the proposed fuzzy model are expressed as linguistic variables and their correlations are defined by If-Then fuzzy rules of conclusion. The theoretical modeling is then followed by numerical examples. There is further extension of model toward assessment and comparison for enterprises of different size and various business branches.
Źródło:
Studia Informatica : systems and information technology; 2009, 1(12); 33-45
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Motion prediction of moving objects in a robot navigational environment using fuzzy-based decision tree approach
Autorzy:
Rajpurohit, V. S.
Manohara Pai, M. M.
Powiązania:
https://bibliotekanauki.pl/articles/384387.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
short term motion prediction
fuzzy rule base
rule base optimization
fuzzy predictor algorithm
directional space approach
decision tree approach
Opis:
In a dynamic robot navigation system the robot has to avoid both static and dynamic objects on its way to destination. Predicting the next instance position of a moving object in a navigational environment is a critical issue as it involves uncertainty. This paper proposes a fuzzy rulebased motion prediction algorithm for predicting the next instance position of moving human motion patterns. Fuzzy rule base has been optimized by directional space approach and decision tree approach. The prediction algorithm is tested for real-life bench- marked human motion data sets and compared with existing motion prediction techniques. Results of the study indicate that the performance of the predictor is comparable to the existing prediction methods.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 4; 11-18
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy model for the information and decision making support system for the CFM branch company
Autorzy:
Walaszek-Babiszewska, A.
Chudzicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/118161.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
managerial decisions
fuzzy rule-based model
car fleet management
MIS
application requirements
customer segmentation
Opis:
The aim of this work is to present the ways of improvement the management process in the CFM company, by developing and implementing the Management Information System (MIS). In the first chapter the characteristic of Car Fleet Management company is presented. The second chapter describes how MIS could support management of that type of company, as well as general and functional requirements of the computer application. Third chapter presents an example of methodology of solving selected decision-making problem using a fuzzy rule-based model.
Źródło:
Applied Computer Science; 2006, 2, 1; 110-121
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rough Set-Based Dimensionality Reduction for Supervised and Unsupervised Learning
Autorzy:
Shen, Q.
Chouchoulas, A.
Powiązania:
https://bibliotekanauki.pl/articles/908369.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
baza wiedzy
gromadzenie wiedzy
knowledge-based systems
fuzzy rule induction
rough dimensionality reduction
knowledge acquisition
Opis:
The curse of dimensionality is a damning factor for numerous potentially powerful machine learning techniques. Widely approved and otherwise elegant methodologies used for a number of different tasks ranging from classification to function approximation exhibit relatively high computational complexity with respect to dimensionality. This limits severely the applicability of such techniques to real world problems. Rough set theory is a formal methodology that can be employed to reduce the dimensionality of datasets as a preprocessing step to training a learning system on the data. This paper investigates the utility of the Rough Set Attribute Reduction (RSAR) technique to both supervised and unsupervised learning in an effort to probe RSAR's generality. FuREAP, a Fuzzy-Rough Estimator of Algae Populations, which is an existing integration of RSAR and a fuzzy Rule Induction Algorithm (RIA), is used as an example of a supervised learning system with dimensionality reduction capabilities. A similar framework integrating the Multivariate Adaptive Regression Splines (MARS) approach and RSAR is taken to represent unsupervised learning systems. The paper describes the three techniques in question, discusses how RSAR can be employed with a supervised or an unsupervised system, and uses experimental results to draw conclusions on the relative success of the two integration efforts.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 3; 583-601
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new approach for the clustering using pairs of prototypes
Autorzy:
Jezewski, M.
Czabanski, R.
Leski, J.
Horoba, K.
Powiązania:
https://bibliotekanauki.pl/articles/333693.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
fuzzy clustering
pairs of prototypes
fuzzy rule-based classification
grupowanie rozmyte
pary prototypów
rozmyta klasyfikacja oparta na regułach
Opis:
In the presented work two variants of the fuzzy clustering approach dedicated for determining the antecedents of the rules of the fuzzy rule-based classifier were presented. The main idea consists in adding additional prototypes (’prototypes in between’) to the ones previously obtained using the fuzzy c-means method (ordinary prototypes). The ’prototypes in between’ are determined using pairs of the ordinary prototypes, and the algorithm based on distances and densities finding such pairs was proposed. The classification accuracy obtained applying the presented clustering approaches was verified using six benchmark datasets and compared with two reference methods.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 113-121
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies