- Tytuł:
- A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks
- Autorzy:
-
Kowalski, Piotr A.
Słoczyński, Tomasz - Powiązania:
- https://bibliotekanauki.pl/articles/2055168.pdf
- Data publikacji:
- 2021
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
fuzzy neural network
fuzzy flip-flop neuron
particle swarm optimization
training procedure
sieć neuronowa rozmyta
optymalizacja rojem cząstek
procedura szkoleniowa - Opis:
- The aim of the presented study is to investigate the application of an optimization algorithm based on swarm intelligence to the configuration of a fuzzy flip-flop neural network. Research on solving this problem consists of the following stages. The first one is to analyze the impact of the basic internal parameters of the neural network and the particle swarm optimization (PSO) algorithm. Subsequently, some modifications to the PSO algorithm are investigated. Approximations of trigonometric functions are then adopted as the main task to be performed by the neural network. As a result of the numerical verification of the problem, a set of rules are developed that can be helpful in constructing a fuzzy flip-flop type neural network. The obtained results of the computations significantly simplify the structure of the neural network in relation to similar conditions known from the literature.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 577--586
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki