Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "funkcje porównujące" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Porównanie wybranych algorytmów wilczego stada stosowanych w rozwiązaniach problemów optymalizacji
Comparison of selected wolf pack algorithms used in solving optimization problems
Autorzy:
Sangho, Belco
Powiązania:
https://bibliotekanauki.pl/articles/41206104.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
optymalizacja
algorytmy rojowe
algorytmy wilcze
wilki
funkcje porównujące
optimization
swarm algorithms
wolf herd algorithm
wolfs
benchmarks
Opis:
Algorytmy optymalizacyjne zyskały uznanie jako szybki i konsekwentny sposób rozwiązywania problemów optymalizacyjnych. W ostatnim czasie wilki są coraz częściej wykorzystywane jako inspiracja do tworzenia algorytmów, jak i w projektach używających tych algorytmów. W niniejszej pracy opisano sześć wybranych algorytmów. Następnie zaimplementowano je w języku R i porównano z pomocą sześciu funkcji porównujących, tzw. benchmarków. Wyniki trzydziestu testów na każdej z funkcji zaprezentowano za pomocą średniego wyniku, odchylenia standardowego wyniku, średniego czasu oraz odchylenia standardowego czasu. Dodatkowo zaprezentowano wykres zbieżności na dwóch z funkcji porównujących. Uzyskane wyniki algorytmów często różniły się od tych zaprezentowanych w publikacjach, jednak skuteczność części z nich była lepsza bądź porównywalna z PSO[1], DE[2] i GA[3]. Najlepszym wilczym algorytmem okazał się Grey Wolf Optimizer[4].
Optimization algorithms have gained recognition as a fast and consistent way to solve optimization problems. Recently, wolves have been increasingly used as inspiration for algorithms as well as in projects using these algorithms. In this paper, six selected algorithms are described. They were then implemented in R and compared using six comparison functions, called benchmarks. The results of thirty tests on each function were presented by mean score, standard deviation of the score, mean time and standard deviation of the time. Additionally, a convergence plot on two of the benchmark functions was presented. The algorithm results obtained often differed from those presented in the publications, but the performance of some of the algorithms was better or comparable to PSO[1], DE[2], and GA[3]. The best wolf algorithm was found to be Grey Wolf Optimizer[4].
Źródło:
Studia i Materiały Informatyki Stosowanej; 2021, 1; 17-32
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies