Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "frames partitioning" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images
Autorzy:
Les, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2090740.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kidney detection
medical image processing
U-net
frames partitioning
volumetric analysis
wykrywanie nerek
przetwarzanie obrazu medycznego
partycjonowanie ramek
analiza objętościowa
Opis:
This work presents an automatic system for generating kidney boundaries in computed tomography (CT) images. This paper presents the main points of medical image processing, which are the parts of the developed system. The U-Net network was used for image segmentation, which is now widely used as a standard solution for many medical image processing tasks. An innovative solution for framing the input data has been implemented to improve the quality of the learning data as well as to reduce the size of the data. Precision-recall analysis was performed to calculate the optimal image threshold value. To eliminate false-positive errors, which are a common issue in segmentation based on neural networks, the volumetric analysis of coherent areas was applied. The developed system facilitates a fully automatic generation of kidney boundaries as well as the generation of a three-dimensional kidney model. The system can be helpful for people who deal with the analysis of medical images, medical specialists in medical centers, especially for those who perform the descriptions of CT examination. The system works fully automatically and can help to increase the accuracy of the performed medical diagnosis and reduce the time of preparing medical descriptions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137051, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images
Autorzy:
Les, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2173575.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kidney detection
medical image processing
U-net
frames partitioning
volumetric analysis
wykrywanie nerek
przetwarzanie obrazu medycznego
partycjonowanie ramek
analiza objętościowa
Opis:
This work presents an automatic system for generating kidney boundaries in computed tomography (CT) images. This paper presents the main points of medical image processing, which are the parts of the developed system. The U-Net network was used for image segmentation, which is now widely used as a standard solution for many medical image processing tasks. An innovative solution for framing the input data has been implemented to improve the quality of the learning data as well as to reduce the size of the data. Precision-recall analysis was performed to calculate the optimal image threshold value. To eliminate false-positive errors, which are a common issue in segmentation based on neural networks, the volumetric analysis of coherent areas was applied. The developed system facilitates a fully automatic generation of kidney boundaries as well as the generation of a three-dimensional kidney model. The system can be helpful for people who deal with the analysis of medical images, medical specialists in medical centers, especially for those who perform the descriptions of CT examination. The system works fully automatically and can help to increase the accuracy of the performed medical diagnosis and reduce the time of preparing medical descriptions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137051
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies