Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fractional domination number" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On the uniqueness of $D$-vertex magic constant
Autorzy:
Arumugam, S.
Kamatchi, N.
Vijayakumar, G.R.
Powiązania:
https://bibliotekanauki.pl/articles/30148233.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distance magic graph
D-vertex magic graph
magic constant
dominating function
fractional domination number
Opis:
Let $G = (V,E)$ be a graph of order n and let $D ⊆ {0, 1, 2, 3, . . .}$. For $v ∈ V$, let $N_D(v) = {u ∈ V : d(u, v) ∈ D}$. The graph $G$ is said to be $D$-vertex magic if there exists a bijection $f : V (G) → {1, 2, . . ., n}$ such that for all $v ∈ V, _{∑uv∈ND(v)} f(u)$ is a constant, called $D$-vertex magic constant. O’Neal and Slater have proved the uniqueness of the $D$-vertex magic constant by showing that it can be determined by the $D$-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete $r$-partite graphs where $r ≥ 4$.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 279-286
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fractional global domination in graphs
Autorzy:
Arumugam, Subramanian
Karuppasamy, Kalimuthu
Hamid, Ismail
Powiązania:
https://bibliotekanauki.pl/articles/744509.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
global domination
dominating function
global dominating function
fractional global domination number
Opis:
Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, $g(N[v]) = ∑_{u ∈ N[v]}g(u) ≥ 1$ and $g(\overline{N(v)}) = ∑_{u ∉ N(v)}g(u) ≥ 1$. A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number $γ_{fg}(G)$ is defined as follows: $γ_{fg}(G)$ = min{|g|:g is an MGDF of G } where $|g| = ∑_{v ∈ V} g(v)$. In this paper we initiate a study of this parameter.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 1; 33-44
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies