Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forest fire model" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Modelowania pożaru lasu. Część IV. Modele inicjacji i rozprzestrzeniania się ognia koron drzew
Forest fire modelling. Part IV. Models of the initiation and spread of crown fire
Autorzy:
Maciak, T.
Czerpak, T.
Powiązania:
https://bibliotekanauki.pl/articles/372932.pdf
Data publikacji:
2012
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
model pożaru koron drzew
modele pożaru lasu
crown fire model
forest fire modeling
Opis:
W pracy zaprezentowano matematyczny sposób modelowania pożaru koron drzew lasu oraz omówiono model roznoszenia płonących fragmentów roślinności przez wiatr. Oba modele są stosowane w oprogramowaniu FARSITE. Model pożaru koron drzew został przedstawiony zgodnie z teorią Van Wagnera. Zaprezentowane równania są częściowo empiryczne. Za pomocą modelu Van Wagnera można określić, czy ogień pozostaje tylko w przestrzeni paliw powierzchni, czy przenosi się na korony drzew. Paliwa koron są traktowane jako jednorodna warstwa umiejscowiona na stałej wysokość od podłoża, posiadająca określoną głębokość i gęstość. W rozważanych modelach nie są brane w wyraźny sposób pod uwagę różne mechanizmy przenikania ciepła takie jak np. promieniowanie, konwekcja lub przewodzenie. Przyjęcie jednorodnej warstwy koron drzew jest podstawowym założeniem współczesnych modeli służących do przewidywania zachowania się ognia. W rzeczywistości warunki te są spełnione tylko w siedliskach gęstych lasów składających się z drzew bardzo podobnych jeśli chodzi o wiek i rozmiar. Nie są natomiast spełnione w siedliska o zmiennej gęstości drzew. Model roznoszenia płonących fragmentów roślinności przez wiatr został zaprezentowany na podstawie opracowania Albiniego. Modelowane zjawisko może mieć bardzo duży zasięg. Płonące żagwie mogą przenosić się z wiatrem na wiele kilometrów, dramatycznie zmieniając rozwój pożaru. Symulacja tego zjawiska opiera się przede wszystkim na określeniu lokalizacji płonących fragmentów o różnych rozmiarach. Odległość przenoszenia płonących żagwi na nierównym terenie zależy przede wszystkim od: wielkości żagwi, pionowego profilu prędkości wiatru oraz od topografii powierzchni w kierunku przenoszenia niedopałków. Model Albiniego pozwala obliczyć poziom, do którego unoszone są płonące cząstki oraz zasięg zagrożenia pożarowego. W trzeciej części pracy pokazano w jaki sposób z niepełnych danych będących w posiadaniu Dyrekcji Lasów Państwowych można oszacować dane wejściowe do symulacji pożaru kompleksu leśnego w oprogramowaniu FARSITE.
The paper presents a mathematical method of modeling the forest crown fires, and discusses a model of delivering the burning fragments of vegetation by the wind. Both models are used in FARSITE software. Crown fire model has been presented in accordance with the theory of Van Wagner. The presented equations are partially empirical. With the help of Van Wagner.s model to determine of the fire is only in the area of fuel surface, and moves to the crowns of trees. Crown fuels are treated as a homogenous layer located at a constant height from the floor, having a specifies depth and density. The models under consideration are not taken explicitly into account the different heat transfer mechanisms such as radiation, convection of conduction. The adoption of a uniform layer of the crown is the basic assumption of contemporary models to predict the behavior of fire. In fact, these conditions are met only in dense forest habitats consisting of trees are very similar in terms of age and size. There are, however, met with a variable density of habitat trees. Model spreading flaming fragments of vegetation by the wind was presented on the basis of the development of Albini. Modeled phenomenon may have a very large range. The burning of charcoal can move with the wind for miles, dramatically altering the development of a fire. The simulation of this phenomenon is based primarily on identifying the location of burning fragments of different sizes. Distance transmission burning charcoal in the rough terrain depends primarily on: the size of charcoal in the vertical profile of wind speed and surface topography of cigarette butts in the conveying direction. Albini model allows to calculate the degree to which particles are lifted and the extent of burning fire hazard. In the third part of the paper shows how the incomplete data held by the RDLP in Bialystok can estimate the input to the simulation of complex forest fire in FARSITE software.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2012, 2; 27-36
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Komputerowa symulacja rozwoju pożaru kompleksu leśnego w pobliżu Nowogrodu Cz. I. Dobór danych wejściowych
Computer simulation of fire development of the forest complex near Nowogród Part I. Selection of the input data
Autorzy:
Maciak, T.
Marzewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/404306.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
symulacja rozwoju pożaru lasu
modele pożaru lasu
forest fire simulation
forest fire model
Opis:
W pierwszej części pracy przedstawiono sposób pozyskiwania danych wejściowych do oprogramowania FARSITE. Z RDLP otrzymano numeryczny model terenu. Mapę nachyleń i ekspozycji oraz mapę pokrycia terenu koronami drzew uzyskano w sposób pośredni. Do opisu paliw powierzchni posłużyły modele opisane przez Scotta i Burgana. Przyjęta mapa wysokości drzew, wysokości oraz gęstości koron drzew dotyczyła sosny zwyczajnej. Opis pogody i wiatru został przyjęty na podstawie średnich warunków pogodowych charakterystycznych dla początku lipca w Polsce.
In the first part of the paper a method of obtaining input data into FARSITE software was presented. From RDLP obtained digital terrain model. Map of slopes, exposures and map land cover crowns of trees obtained in an indirect way. To describe the surface fuels were used models described by Scott and Burgan. Adopted map tree height and density of the tree canopy of pinus sylvestris concerned. Description of weather and wind has been adopted on the basis of average weather conditions characteristic for the beginning of July in Poland.
Źródło:
Symulacja w Badaniach i Rozwoju; 2013, 4, 3; 153-169
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Matematičeskoe modelirovanie raspostraneniâ lesnogo požara s učetom vetra i relefa
Model matematyczny rozprzestrzenienia pożaru lasu uwzględniający czynniki wiatru i ukształtowania terenu
Mathematical Modeling of Forest Fire Spread Taking Into Account Wind and Topography
Autorzy:
Kuzyk, A. D.
Karabyn, O. O.
Powiązania:
https://bibliotekanauki.pl/articles/373411.pdf
Data publikacji:
2013
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
model matematyczny
pożar lasu
rozprzestrzenianie się pożaru
front pożaru
ukształtowanie terenu
mathematical model
forest fire
fire spread
fire front
topography
Opis:
Cel: W artykule opisane zostały wyniki opracowania modelu matematycznego do określenia prędkości rozprzestrzenienia się frontu dolnego (ściółkowego) pożaru leśnego na płaszczyźnie pod wpływem stopnia nachylenia powierzchni, wiatru i ich wzajemnych oddziaływań. Projekt i metody: Model matematyczny tworzony był z użyciem metod algebry wektorów i geometrii analitycznej, liczby Froude’a oraz zależności empirycznych, otrzymanych z dostępnych danych eksperymentalnych. Badania eksperymentalne prędkości rozprzestrzeniania się pożaru przeprowadzono w warunkach terenowych (na poligonie) na trzech najczęściej spotykanych typach materiału palnego: ściółce lasu iglastego, ściółce lasu liściastego i suchej trawie. Materiał palny został wybrany z zachowaniem równowagi jego wilgotności oraz został ułożony na płaszczyźnie poziomej oraz pod kątami. Działanie wiatru imitowane było przy pomocy elektrycznego wentylatora, a prędkość kontrolowano anemometrem. Wyniki: Model matematyczny prędkości rozprzestrzeniania się frontu pożaru opracowywano z uwzględnieniem następujących zależności: liczby Froude’a od szybkości wiatru i wysokości płomienia; kąta nachylenia płomieni od liczby Froude’a. Wpływ wiatru na prędkość rozprzestrzeniania się frontu pożaru opisano odpowiednim współczynnikiem, którego wielkość określana jest zależnością empiryczną. Wpływ nachylenia doprowadził do podanej prędkości wiatru, pod wpływem której w przypadku rozprzestrzeniania się pożaru na płaskiej płaszczyźnie płomienie odchylałyby się od normalnej o kąt wynikający z kierunku nawiewu. W przypadku rozprzestrzeniania pożaru pod górę podany współczynnik prędkości wiatru trzeba podzielić przez cosinus kąta nachylenia powierzchni, co zostało potwierdzone poprzez porównanie wyników modelowania z dostępnymi eksperymentalnymi i empirycznymi zależnościami. Całkowity wpływ wiatru i nachylenia opisany został za pomocą algebry wektorów. Wyniki opracowania modelu matematycznego zostały porównane z wynikami eksperymentów. Dobra zgodność została odnotowana w przypadku materiałów palnych – ściółki iglastej, trochę gorsza – dla ściółki liściastej i zadowalająca – dla suchej trawy. Wnioski: Zależność prędkości rozprzestrzeniania frontu pożaru od wspólnego oddziaływania nachylenia powierzchni i wiatru opisana jest za pomocą modelu matematycznego, którego wyniki odpowiadają wynikom badań eksperymentalnych, szczególnie w przypadku ściółki iglastej – materiału palnego występującego w lasach najbardziej narażonych na pożary – lasach iglastych. Zastosowanie zaproponowanego modelu jest możliwe przy opracowaniu systemów komputerowych modelowania rozprzestrzenienia pożaru, wykorzystywanych przez służby straży pożarnej w celu efektywnego zarządzania siłami i środkami przy wybuchu pożaru.
Objective: The article describes the results of creating a mathematical model aimed to determine the flame spreading velocity of ground forest fire fronts. The model involves a fire front located on a plane under the influence of slope, wind, and their joint action. The experimental results were used for validation of the model. Project and methods: The mathematical modeling was performed using the methods of vector algebra and analytical geometry as well as the Froude number and the empirical relationships derived from the already known experimental results. Experimental studies on the fire propagation velocity were carried out on the training ground and involved an analysis of three most common types of forest fuels: coniferous litter, leaf litter, dry grass. The combustible material was chosen maintaining its humidity balance and placed on a plane arranged horizontally and at angles to the horizon. The wind action was simulated using the motor blower and the speed was controlled using anemometer. Results: The mathematical modeling of the speed of the fire front propagation was performed taking into account the dependencies of the Froude number on the wind speed and flame height as well as the angle of the flame on the Froude number. The influence of wind on the spreading velocity of the fire front was described with the corresponding coefficient whose value was determined by the empirical dependence. Influence of slope brought about given wind speed. At such wind speed, during the spread of fire, in the case of the horizontal plane of the flame, the flames would be deviated from the normal at the same angle. In the case of ground fire wind speed coefficient should be divided by the cosine of the angle of the surface to the horizon, which is confirmed by comparing the simulation results with experimental and empirical relationships. The cumulative effect of the wind and the slope was described using vector algebra. The results of the mathematical model were compared with experimental data. Good compliance was noted in the case of combustible material – coniferous litter, a little worse – for leaf litter and satisfactory – for dry grass. Conclusions: The dependence of the velocity of the ground fire front propagation and the combined effect of wind and slope surface was described by the mathematical model. There is a good correspondence between the data obtained with the use of the model and the experimental results, especially in the case of coniferous litter – combustible material of the most flammable coniferous forests. The application of the proposed model gives an opportunity for the creation of the forest fires spread computer system modelling that will be useful for effective commanding and control of forest fires.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2013, 4; 107-113
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies