Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forecasting of properties" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Bazy wiedzy z regułami rozmytymi w predykcji wybranych właściwości warstw wytwarzanych w procesach azotowania gazowego
Knowledge bases with fuzzy rules in prediction of selected properties of layers obtained in gas nitriding processes
Autorzy:
Dobrodziej, J.
Powiązania:
https://bibliotekanauki.pl/articles/257461.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
baza wiedzy
proces cieplno-chemiczny
azotowanie gazowe
logika rozmyta
wnioskowanie rozmyte
prognozowanie właściwości
warstwa
powłoka
knowledge base
thermochemical process
fuzzy logic
fuzzy inference
forecasting of properties
layer
coating
Opis:
W artykule przedstawiono metodykę budowy baz wiedzy zawierających reguły rozmyte wykorzystywane w zadaniach wnioskowania o właściwościach warstw wierzchnich wytwarzanych w procesach cieplno-chemicznych, w szczególności procesach azotowania gazowego. Podstawę prezentowanej metodyki stanowi zintegrowane współdziałanie baz danych oraz modeli sztucznej inteligencji opracowanych z użyciem logiki rozmytej. Przedstawiono struktury danych dedykowane do odwzorowywania parametrów i zależności funkcyjnych kompleksowo charakteryzujących materiał podłoża, środowisko procesowe oraz właściwości warstwy wierzchniej. Na przykładzie wybranych właściwości warstw wierzchnich konstytuowanych w rzeczywistych procesach technologicznych przeprowadzono weryfikację opracowanych modeli komputerowych wnioskowania rozmytego.
The paper presents the methodology of building the knowledge base that includes fuzzy rules used for inference about properties of surface layers obtained in thermochemical processes, in gas nitriding processes in particular. The basis of presented methodology is an integral cooperation between databases and artificial intelligence based on fuzzy logic. Moreover, the paper shows data structures for mapping the parameters and function relations that comprehensively characterise substrate material, process environment and surface layer properties. In order to verify elaborated computer models of fuzzy inference a comparison research was performed on selected properties of surface layers constituted in real technological processes.
Źródło:
Problemy Eksploatacji; 2011, 3; 7-18
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks in mining sciences – general overview and some representative examples
Sieci neuronowe w naukach górniczych – ogólne omówienie i kilka reprezentatywnych przykładów
Autorzy:
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/219318.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
applications in mining sciences
process modeling
systems modeling
machine learning
modeling of the oil mining process
forecasting of reservoir properties
sieci neuronowe
zastosowania w naukach górniczych
modelowanie procesów
modelowanie systemów
uczenie maszyn
modelowanie procesu wydobycia ropy naftowej
przewidywanie właściwości zbiornikowych pokładów geologicznych
Opis:
The many difficult problems that must now be addressed in mining sciences make us search for ever newer and more efficient computer tools that can be used to solve those problems. Among the numerous tools of this type, there are neural networks presented in this article – which, although not yet widely used in mining sciences, are certainly worth consideration. Neural networks are a technique which belongs to so called artificial intelligence, and originates from the attempts to model the structure and functioning of biological nervous systems. Initially constructed and tested exclusively out of scientific curiosity, as computer models of parts of the human brain, neural networks have become a surprisingly effective calculation tool in many areas: in technology, medicine, economics, and even social sciences. Unfortunately, they are relatively rarely used in mining sciences and mining technology. The article is intended to convince the readers that neural networks can be very useful also in mining sciences. It contains information how modern neural networks are built, how they operate and how one can use them. The preliminary discussion presented in this paper can help the reader gain an opinion whether this is a tool with handy properties, useful for him, and what it might come in useful for. Of course, the brief introduction to neural networks contained in this paper will not be enough for the readers who get convinced by the arguments contained here, and want to use neural networks. They will still need a considerable portion of detailed knowledge so that they can begin to independently create and build such networks, and use them in practice. However, an interested reader who decides to try out the capabilities of neural networks will also find here links to references that will allow him to start exploration of neural networks fast, and then work with this handy tool efficiently. This will be easy, because there are currently quite a few ready-made computer programs, easily available, which allow their user to quickly and effortlessly create artificial neural networks, run them, train and use in practice. The key issue is the question how to use these networks in mining sciences. The fact that this is possible and desirable is shown by convincing examples included in the second part of this study. From the very rich literature on the various applications of neural networks, we have selected several works that show how and what neural networks are used in the mining industry, and what has been achieved thanks to their use. The review of applications will continue in the next article, filed already for publication in the journal „Archives of Mining Sciences“. Only studying these two articles will provide sufficient knowledge for initial guidance in the area of issues under consideration here.
Liczne i trudne problemy, jakie muszą być obecnie rozwiązywane w naukach górniczych, skłaniają do poszukiwanie i wypróbowywania wciąż nowszych i bardziej sprawnych narzędzi informatycznych, które mogą być wykorzystane do rozwiązywania tych problemów. Wśród narzędzi tego typu, które wprawdzie jeszcze powszechnie wykorzystywane nie są, z pewnością zasługują na uwagę, warto rozważyć przedstawiane w tym artykule sieci neuronowe. Sieć neuronowa, której schemat przedstawiony jest na rysunku 1, jest narzędziem tak zwanej sztucznej inteligencji, wywodzącym się z prób modelowania struktury i funkcji biologicznych systemów nerwowych. Początkowo budowane i badane wyłącznie z ciekawości naukowej, jako komputerowe modele fragmentów ludzkiego mózgu, sieci neuronowe nieoczekiwanie okazały się skutecznym narzędziem w wielu zastosowaniach: w technice, w medycynie, w ekonomii a nawet w naukach społecznych. Mogą one dostarczać pojedynczych rozwiązań (wartości oszacowań poszukiwanych parametrów, lub przesłanek do podjęcia określonych decyzji), bądź całych wektorów rozwiązań – jakkolwiek w tym drugim przypadku celowe jest rozważenie kwestii, czy zastosować jedną sieć o wielu wyjściach, czy kilka sieci mających pojedyncze wyjście (Rys. 2). Przy tworzeniu sieci neuronowych trzeba wybierać stopień złożoności jej struktury, co nie jest łatwe, ponieważ sieć o zbyt ubogiej strukturze (zwłaszcza dysponująca zbyt mała liczbą tak zwanych neuronów ukrytych) może nie podołać rozwiązaniu bardziej złożonego zadania, natomiast sieć mająca zbyt skomplikowaną i bogatą strukturę zawsze sprawia kłopoty podczas procesu uczenia. Proces uczenia jest kluczem do wszystkich zastosowań sieci neuronowych. Kluczem do skutecznego nauczenia sieci rozwiązywania jakiejś klasy zadań jest posiadanie tak zwanego zbioru uczącego, to znaczy zbioru przykładowych zadań wraz z ich prawidłowymi rozwiązaniami (Rys. 4). Wprowadzając na wejście sieci dane stanowiące przesłanki do rozwiązania zadania i porównując odpowiedź sieci z prawidłową odpowiedzią zapisaną w zbiorze uczącym można na podstawie wykrytego błędu automatycznie korygować parametry sieci, co prowadzi zwykle do tego, że sieć po pewnym czasie sama nauczy się rozwiązywania rozważanej klasy zadań. Dzięki korzystaniu z procesu uczenia (opartego na przykładach, a nie na regułach) sieć neuronowa może rozwiązywać zadania, dla których my (użytkownicy sieci) nie dysponujemy wiedzą, jak te zadania należy rozwiązywać (Rys. 6). Dzięki temu sieć neuronowa może służyć jako model dowolnego złożonego procesu, co pozwala na wykonywanie dla tego procesu wielu istotnych czynności (Rys. 7). Niestety, mimo niewątpliwych zalet sieci neuronowych w naukach górniczych są one stosowane raczej rzadko. Prezentowany artykuł ma przekonać Czytelników, że sieci neuronowe mogą się okazać bardzo przydatne także w naukach górniczych. Artykuł stanowi również użyteczne wstępne wprowadzenie do wiedzy o sieciach neuronowych. Praca zawiera bowiem informacje o tym, jak są zbudowane nowoczesne sieci neuronowe, jak one działają i jak można ich używać. To wstępne omówienie przedstawione w artykule może pomóc w tym, by Czytelnik wyrobił sobie opinię, czym jest to narzędzie, jakie ma właściwości i w związku z tym do czego może mu się przydać. Oczywiście skrótowe wprowadzenie do problematyki sieci neuronowych zawarte w prezentowanym artykule nie wystarczy tym Czytelnikom, którzy dadzą się przekonać i naprawdę będą chcieli użyć sieci neuronowych. Będą oni potrzebowali jeszcze sporej porcji szczegółowej wiedzy, żeby mogli zacząć samodzielnie tworzyć takie sieci i ich używać w praktyce. Jednak jeśli decyzja o wypróbowaniu możliwości sieci neuronowych będzie pozytywna, to zainteresowany Czytelnik będzie mógł w artykule znaleźć odnośniki do pozycji literatury, pozwalających szybko i sprawnie poznać technikę sieci neuronowych na poziomie wystarczającym do rozpoczęcia własnych prac z tym wygodnym narzędziem. Będzie to tym łatwiejsze, że obecnie dostępnych jest sporo gotowych programów komputerowych pozwalających szybko i bez wysiłku tworzyć sztuczne sieci neuronowe, uruchamiać je, uczyć i wykorzystywać praktycznie. Oczywiście kluczową sprawą jest kwestia, jak tych sieci używać w naukach górniczych. O tym, że jest to możliwe i celowe przekonują jednak przykłady zawarte w drugiej części opracowania. Z przebogatej literatury, dotyczącej różnych zastosowań sieci neuronowych, wybrano kilkanaście prac, które pokazują, jak i do czego sieci neuronowych w górnictwie użyto i co zostało osiągnięte dzięki ich zastosowaniu. Ten przegląd zastosowań będzie kontynuowany w następnym artykule, zgłoszonym już do publikacji w czasopiśmie „Archiwum Górnictwa” i dopiero przestudiowanie obydwu tych artykułów dostarczy wiedzy wystarczającej do wstępnej orientacji w obszarze rozważanej tu problematyki.
Źródło:
Archives of Mining Sciences; 2015, 60, 4; 971-984
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A selection of the parameters of the energy potential of the impact executive bodies and the prediction of their resource
O wyborze parametrów zabezpieczenia energetycznego uderzeniowych organów wykonawczych i prognozowaniu ich resursu
Autorzy:
Nordin, V.
Powiązania:
https://bibliotekanauki.pl/articles/409640.pdf
Data publikacji:
2013
Wydawca:
STE GROUP
Tematy:
impact executive body
multifactor models
destruction
strength properties
resource forecasting
mobile connections of knots of machines
uderzeniowy organ wykonawczy
modele wieloczynnikowe
zniszczenie
parametry wytrzymałościowe
prognozowanie resursu
połączenia ruchome elementów maszyn
Opis:
The article describes received by the author multifactorial models of fracture of materials according to the technological scheme typical for building and road machines. Analysis of the models allows to set a reasonable ratio between speed and mass impact energy components to their use in the design. The relationship was obtained to determine the reasonable value of operating voltages generated by the instrument, depending on the strength properties of a destroyed object. Using an expression to determine the speed of the striker with the well-known strength of a destroyed material, a formula was obtained for the prediction of the resource of mobile connections drums executive bodies.
W artykule opisano otrzymane przez autora wieloczynnikowe modele niszczenia materiałów według schematu technologicznego, właściwego dla maszyn budowlanych i drogowych. Analiza modeli pozwala ustalać racjonalny stosunek pomiędzy prędkościowymi i masowymi komponentami energii udaru do ich wykorzystania w projektowaniu. Otrzymano zależności do określenia racjonalnych wartości naprężeń roboczych, generowanych w organach wykonawczych w zależności od parametrów wytrzymałości niszczonego obiektu. Wykorzystując wyrażenie do określenia prędkości bijaka przy znanej wytrzymałości niszczonego materiału, otrzymano wzór do prognozowania resursu połączeń ruchomych w organach wykonawczych.
Źródło:
Management Systems in Production Engineering; 2013, 2 (10); 19-22
2299-0461
Pojawia się w:
Management Systems in Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies