Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forbidden graph" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Forbidden Structures for Planar Perfect Consecutively Colourable Graphs
Autorzy:
Borowiecka-Olszewska, Marta
Drgas-Burchardt, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/31341980.pdf
Data publikacji:
2017-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge colouring
consecutive (interval) colouring
deficiency
Sevastjanov graph
forbidden graph
Opis:
A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced subgraphs are consecutively colourable, too. We call elements of this class perfect consecutively colourable to emphasise the conceptual similarity to perfect graphs. Obviously, the class of perfect consecutively colourable graphs is induced hereditary, so it can be characterized by the family of induced forbidden graphs. In this work we give a necessary and sufficient conditions that must be satisfied by the generalized Sevastjanov rosette to be an induced forbid- den graph for the class of perfect consecutively colourable graphs. Along the way, we show the exact values of the deficiency of all generalized Sevastjanov rosettes, which improves the earlier known estimating result. It should be mentioned that the deficiency of a graph measures its closeness to the class of consecutively colourable graphs. We motivate the investigation of graphs considered here by showing their connection to the class of planar perfect consecutively colourable graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 2; 315-336
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties
Autorzy:
Drgas-Burchardt, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/743169.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary graph property
lattice of additive hereditary graph properties
minimal forbidden graph family
join in the lattice
reducibility
Opis:
An additive hereditary graph property is any class of simple graphs, which is closed under isomorphisms unions and taking subgraphs. Let $L^a$ denote a class of all such properties. In the paper, we consider H-reducible over $L^a$ properties with H being a fixed graph. The finiteness of the sets of all minimal forbidden graphs is analyzed for such properties.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 263-274
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs
Autorzy:
Li, Binlong
Broersma, Hajo J.
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/31340596.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
forbidden subgraph
1-tough graph
H-free graph
hamiltonian graph
Opis:
A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 915-929
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forbidden configurations for hypohamiltonian graphs
Autorzy:
Fabrici, I.
Madaras, T.
Timkova, M.
Powiązania:
https://bibliotekanauki.pl/articles/256013.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
hypohamiltonian graph
forbidden configuration
long cycle
Opis:
A graph G is called hypohamiltonian if G is not hamiltonian, but G — x is hamiltonian for each vertex x of G. We present a list of 331 forbidden configurations which do not appear in hypohamiltonian graphs.
Źródło:
Opuscula Mathematica; 2018, 38, 3; 357-377
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Minimal forbidden subgraphs of reducible graph properties
Autorzy:
Berger, Amelie
Powiązania:
https://bibliotekanauki.pl/articles/743439.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
reducible graph properties
forbidden subgraphs
induced subgraphs
Opis:
A property of graphs is any class of graphs closed under isomorphism. Let ₁,₂,...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable if the vertex set V(G) can be partitioned into n sets, {V₁,V₂,..., Vₙ}, such that for each i = 1,2,...,n, the graph $G[V_i] ∈ _i$. We write ₁∘₂∘...∘ₙ for the property of all graphs which have a (₁,₂,...,ₙ)-partition. An additive induced-hereditary property is called reducible if there exist additive induced-hereditary properties ₁ and ₂ such that = ₁∘₂. Otherwise is called irreducible. An additive induced-hereditary property can be defined by its minimal forbidden induced subgraphs: those graphs which are not in but which satisfy that every proper induced subgraph is in . We show that every reducible additive induced-hereditary property has infinitely many minimal forbidden induced subgraphs. This result is also seen to be true for reducible additive hereditary properties.
Źródło:
Discussiones Mathematicae Graph Theory; 2001, 21, 1; 111-117
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Toughness, Forbidden Subgraphs, and Hamilton-Connected Graphs
Autorzy:
Zheng, Wei
Broersma, Hajo
Wang, Ligong
Powiązania:
https://bibliotekanauki.pl/articles/32361744.pdf
Data publikacji:
2022-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
toughness
forbidden subgraph
Hamilton-connected graph
Hamiltonicity
Opis:
A graph G is called Hamilton-connected if for every pair of distinct vertices {u, v} of G there exists a Hamilton path in G that connects u and v. A graph G is said to be t-tough if t·ω(G − X) ≤ |X| for all X ⊆ V (G) with ω(G − X) > 1. The toughness of G, denoted τ (G), is the maximum value of t such that G is t-tough (taking τ (Kn) = ∞ for all n ≥ 1). It is known that a Hamilton-connected graph G has toughness τ (G) > 1, but that the reverse statement does not hold in general. In this paper, we investigate all possible forbidden subgraphs H such that every H-free graph G with τ (G) > 1 is Hamilton-connected. We find that the results are completely analogous to the Hamiltonian case: every graph H such that any 1-tough H-free graph is Hamiltonian also ensures that every H-free graph with toughness larger than one is Hamilton-connected. And similarly, there is no other forbidden subgraph having this property, except possibly for the graph K1 ∪ P4 itself. We leave this as an open case.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 1; 187-196
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the 12-Representability of Induced Subgraphs of a Grid Graph
Autorzy:
Chen, Joanna N.
Kitaev, Sergey
Powiązania:
https://bibliotekanauki.pl/articles/32361728.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph representation
12-representable graph
grid graph
forbidden subgraph
square grid graph
line grid graph
Opis:
The notion of a 12-representable graph was introduced by Jones, Kitaev, Pyatkin and Remmel in [Representing graphs via pattern avoiding words, Electron. J. Combin. 22 (2015) #P2.53]. This notion generalizes the notions of the much studied permutation graphs and co-interval graphs. It is known that any 12-representable graph is a comparability graph, and also that a tree is 12-representable if and only if it is a double caterpillar. Moreover, Jones et al. initiated the study of 12- representability of induced subgraphs of a grid graph, and asked whether it is possible to characterize such graphs. This question of Jones et al. is meant to be about induced subgraphs of a grid graph that consist of squares, which we call square grid graphs. However, an induced subgraph in a grid graph does not have to contain entire squares, and we call such graphs line grid graphs. In this paper we answer the question of Jones et al. by providing a complete characterization of 12-representable square grid graphs in terms of forbidden induced subgraphs. Moreover, we conjecture such a characterization for the line grid graphs and give a number of results towards solving this challenging conjecture. Our results are a major step in the direction of characterization of all 12-representable graphs since beyond our characterization, we also discuss relations between graph labelings and 12-representability, one of the key open questions in the area.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 383-403
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Finite Characterization and Recognition of Intersection Graphs of Hypergraphs with Rank at Most 3 and Multiplicity at Most 2 in the Class of Threshold Graphs
Autorzy:
Metelsky, Yury
Schemeleva, Kseniya
Werner, Frank
Powiązania:
https://bibliotekanauki.pl/articles/31342190.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
intersection graph
hypergraph rank
hypergraph multiplicity
forbidden induced subgraph
threshold graph
Opis:
We characterize the class $ L_3^2 $ of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from $ L_3^2 $ in the class of threshold graphs, where n is the number of vertices of a tested graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 13-28
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs with small additive stretch number
Autorzy:
Rautenbach, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/744511.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
stretch number
distance hereditary graph
forbidden induced subgraph
Opis:
The additive stretch number $s_{add}(G)$ of a graph G is the maximum difference of the lengths of a longest induced path and a shortest induced path between two vertices of G that lie in the same component of G.We prove some properties of minimal forbidden configurations for the induced-hereditary classes of graphs G with $s_{add}(G) ≤ k$ for some k ∈ N₀ = {0,1,2,...}. Furthermore, we derive characterizations of these classes for k = 1 and k = 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 291-301
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dominating bipartite subgraphs in graphs
Autorzy:
Bacsó, Gábor
Michalak, Danuta
Tuza, Zsolt
Powiązania:
https://bibliotekanauki.pl/articles/744313.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dominating set
dominating subgraph
forbidden induced subgraph
bipartite graph
k-partite graph
Opis:
A graph G is hereditarily dominated by a class of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to . In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 85-94
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs without induced P₅ and C₅
Autorzy:
Bacsó, Gabor
Tuza, Zsolt
Powiązania:
https://bibliotekanauki.pl/articles/744580.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph domination
connected domination
complete subgraph
forbidden induced subgraph
characterization
Opis:
Zverovich [Discuss. Math. Graph Theory 23 (2003), 159-162.] has proved that the domination number and connected domination number are equal on all connected graphs without induced P₅ and C₅. Here we show (with an independent proof) that the following stronger result is also valid: Every P₅-free and C₅-free connected graph contains a minimum-size dominating set that induces a complete subgraph.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 3; 503-507
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graph domination in distance two
Autorzy:
Bacsó, Gábor
Tálos, Attila
Tuza, Zsolt
Powiązania:
https://bibliotekanauki.pl/articles/744316.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
dominating set
connected domination
distance domination
forbidden induced subgraph
Opis:
Let G = (V,E) be a graph, and k ≥ 1 an integer. A subgraph D is said to be k-dominating in G if every vertex of G-D is at distance at most k from some vertex of D. For a given class of graphs, Domₖ is the set of those graphs G in which every connected induced subgraph H has some k-dominating induced subgraph D ∈ which is also connected. In our notation, Dom coincides with Dom₁. In this paper we prove that $Dom Dom _u = Dom₂ _u$ holds for $_u$ = {all connected graphs without induced $P_u$} (u ≥ 2). (In particular, ₂ = {K₁} and ₃ = {all complete graphs}.) Some negative examples are also given.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 121-128
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heavy subgraph pairs for traceability of block-chains
Autorzy:
Li, Binlong
Broersma, Hajo
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/30148234.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
block-chain traceable graph
Ore-type condition
forbidden subgrap
$o_{−1}$-heavy subgraph
Opis:
A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is $o_{−1}$-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least $n−1$ in $G$. A block-chain is a graph whose block graph is a path, i.e., it is either a $P_1$, $P_2$, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks. Obviously, every traceable graph is a block-chain, but the reverse does not hold. In this paper we characterize all the pairs of connected $o_{−1}$-heavy graphs that guarantee traceability of block-chains. Our main result is a common extension of earlier work on degree sum conditions, forbidden subgraph conditions and heavy subgraph conditions for traceability
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 287-307
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Game-Perfect Semiorientations of Forests
Autorzy:
Andres, Stephan Dominique
Charpentier, Clément
Fong, Wai Lam
Powiązania:
https://bibliotekanauki.pl/articles/32361719.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
game chromatic number
game-perfect digraph
forest
dichromatic number
game-perfect graph
forbidden induced subdigraph
Opis:
We consider digraph colouring games where two players, Alice and Bob, alternately colour vertices of a given digraph D with a colour from a given colour set in a feasible way. The game ends when such move is not possible any more. Alice wins if every vertex is coloured at the end, otherwise Bob wins. The smallest size of a colour set such that Alice has a winning strategy is the game chromatic number of D. The digraph D is game-perfect if, for every induced subdigraph H of D, the game chromatic number of H equals the size of the largest symmetric clique of H. In the strong game, colouring a vertex is feasible if its colour is different from the colours of its in-neighbours. In the weak game, colouring a vertex is feasible unless it creates a monochromatic directed cycle. There are six variants for each game, which specify the player who begins and whether skipping is allowed for some player. For all six variants of both games, we characterise the class of game-perfect semiorientations of forests by a set of forbidden induced subdigraphs and by an explicit structural description.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 501-534
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on joins of additive hereditary graph properties
Autorzy:
Drgas-Burchardt, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/743593.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property
lattice of additive hereditary graph properties
minimal forbidden subgraph family
join in the lattice
Opis:
Let $L^a$ denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set $(L^a, ⊆ )$ is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in $(L^a, ⊆ )$ has a finite or infinite family of minimal forbidden subgraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 3; 413-418
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies