- Tytuł:
- On \(\ell_1\)-preduals distant by 1
- Autorzy:
- Piasecki, Łukasz
- Powiązania:
- https://bibliotekanauki.pl/articles/747045.pdf
- Data publikacji:
- 2018
- Wydawca:
- Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
- Tematy:
-
Banach-Mazur distance
nearly (almost) isometric Banach spaces
\(\ell_1\)-preduals, hyperplanes in c, weak\(^*\) fixed point property
stable weak\(^*\) fixed point property
almost stable weak\(^*\) fixed point property
nonexpansive mappings - Opis:
- For every predual \(X\) of \(\ell_1\) such that the standard basis in \(\ell_1\) is weak\(^*\) convergent, we give explicit models of all Banach spaces \(Y\) for which the Banach-Mazur distance \(d(X,Y)=1\). As a by-product of our considerations, we obtain some new results in metric fixed point theory. First, we show that the space \(\ell_1\), with a predual \(X\) as above, has the stable weak\(^*\) fixed point property if and only if it has almost stable weak\(^*\) fixed point property, i.e. the dual \(Y^*\) of every Banach space \(Y\) has the weak\(^*\) fixed point property (briefly, \(\sigma(Y^*,Y)\)-FPP) whenever \(d(X,Y)=1\). Then, we construct a predual \(X\) of \(\ell_1\) for which \(\ell_1\) lacks the stable \(\sigma(\ell_1,X)\)-FPP but it has almost stable \(\sigma(\ell_1,X)\)-FPP, which in turn is a strictly stronger property than the \(\sigma(\ell_1,X)\)-FPP. Finally, in the general setting of preduals of \(\ell_1\), we give a sufficient condition for almost stable weak\(^*\) fixed point property in \(\ell_1\) and we prove that for a wide class of spaces this condition is also necessary.
- Źródło:
-
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2018, 72, 2
0365-1029
2083-7402 - Pojawia się w:
- Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
- Dostawca treści:
- Biblioteka Nauki