Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fermentation energy" wg kryterium: Temat


Tytuł:
Chemical and energetical properties in methane fermentation of morphological parts of corn with different variety earliness standard FAO
Chemiczne i energetyczne właściwości wynikające z fermentacji metanowej morfologicznych części kukurydzy o różnym wskaźniku wczesności odmiany FAO
Autorzy:
Wojcieszak, Dawid
Pawłowski, Artur
Dammer, Karl-Heinz
Przybył, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/16539638.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
corn
energy value
methane fermentation
chemical properties
morphological corn parts
earliness standard
kukurydza
wartość energetyczna
fermentacja metanowa
właściwości chemiczne
morfologiczne części kukurydzy
wskaźnik wczesności odmiany
Opis:
In the last decades, the production of biomass biofuels for thermochemical conversion to replace fossil fuels has attracted increasing attention as it offers significant environmental benefits. A very common way to convert biomass to energy is methane fermentation. The importance of biogas as a source of energy is growing. The use of biomass to biogas production on a large, global scale may lead to controversial competition for arable land, water, and consequently, food. Therefore, only waste materials and agricultural by-products and residues should be used for biogas production. Corn stover is a good example of agricultural residues for biogas production. Therefore, the aim of these studies was to determine the influence of corn variety earliness FAO on the chemical compositions and energy value of morphological parts (fractions) of corn plants. The research material consisted of morphological parts of corn plants: stalks, leaves, husks, and cobs of selected corn cultivars, differing in terms of their FAO earliness: early (FAO 220), medium-early (FAO 240) and late (FAO 300) varieties. The research included laboratory investigations, elemental analysis, methane fermentation and statistical analyses of results. Based on the results of the study, it was concluded that the FAO earliness of a corn variety had a significant impact on the elemental composition, ash content, biogas, and methane yield in the corn morphological fractions. The highest methane yield of 267.4 m3 x Mg-1 TS was found for the cucurbit cover leaves of a variety with an FAO 240 earliness standard.
W ostatnich dekadach produkcja biopaliw z biomasy do konwersji termochemicznej w celu zastąpienia paliw kopalnianych przyciąga coraz większą uwagę, ponieważ oferuje istotne korzyści dla środowiska. Fermentacja metanowa jest bardzo popularnym sposobem konwersji biomasy na energię. Znaczenie biogazu jako źródła energii wzrasta. Zastosowanie biomasy do produkcji biogazu na dużą, światową skalę może prowadzić do kontrowersji związanych z konkurowaniem o grunty orne, wodę, a w konsekwencji o żywność. Dlatego do produkcji biogazu powinny być wykorzystywane wyłącznie odpady, produkty uboczne oraz pozostałości rolnicze. Dobrym przykładem pozostałości rolniczych do produkcji biogazu jest słoma kukurydziana. Dlatego celem tych badań było określenie wpływu wzorca wczesności odmian FAO na skład chemiczny i wartość energetyczną części morfologicznych kukurydzy. Materiałem badawczym były morfologiczne części kukurydzy: łodygi, liście, liście okrywe, rdzenie kolb wybranych odmian kukurydzy zróżnicowane pod względem wskaźnika wczesności odmiany FAO: wczesne (FAO 220), średnio-wczesne (FAO 240) oraz późne (FAO 300). Badania obejmowały analizę chemiczną, fermentację metanową oraz analizę statystyczną wyników. Na podstawie wyników badań stwierdzono, że wskaźnik wczesności odmian FAO miał istotny wpływ na skład chemiczny, zawartość popiołu, uzysk biogazu i metanu z części morfologicznych kukurydzy. Najwyższy uzysk metanu 267,4 m3 Mg-1 TS osiągnięto dla liści okrywowych kukurydzy odmiany o wskaźniku wczesności FAO 240.
Źródło:
Agricultural Engineering; 2023, 27, 1; 273--287
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Management of biomass of selected grape leaves varieties in the process of methane fermentation
Autorzy:
Klimek, Kamila E.
Wrzesińska-Jedrusiak, Edyta
Kapłan, Magdalena
Łaska-Zieja, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/2174282.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
biogas plant
biomass utilisation
methane fermentation
methane biogasification
plant biomass
renewable energy
Opis:
Biogas plants are one of the most stable sources of renewable energy. Currently, there is a noticeable increase in the amount of post-production residues from agricultural production and agri-food processing (fruit and vegetable processing, fermentation, beet pulp, or lignocellulosic waste), which, can be used for biogas production after appropriate pretreatment. The aim of this study was to examine the possibility of using the biomass produced during the cultivation of grapes on a selected farm as a substrate for a biogas plant, taking into account the production process. The research was carried out in 2018-2020 in a vineyard located in the Sandomierz Upland in the south-eastern part of Poland. Own rooted vines were grown as a single continuous string with a trunk height of 40 cm and a length of one fixed arm approx. 0.9 m, on which six pivots were left every year after applying a short cut, from which 12-16 fruit shoots were derived, the so-called grapevines. Leaves were collected at random from three locations on the fruiting shoot, a total of 30 leaves in each replicate. Each sample consisted of 1/3 of the leaves collected at the bottom, 1/3 in the middle, and 1/3 at the top of the canopy. Leaf area was estimated with a model 3100 area meter on a sample of 30 leaves from each replicate. Both the quantity and quality of the obtained material as a substrate for methane fermentation were evaluated. Biogas yield tests in optimal conditions for mesophilic bacteria were conducted on three substrate samples referred to as ‘Regent’, ‘Seyval Blanc’, and ‘Solaris’. The yields of the tested material ranged from 51.0 to 59.0 Nm3 biogas per Mg of biomass.
Źródło:
Journal of Water and Land Development; 2022, 55; 17--27
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technologii energetyki biogazowej w systemie bezpieczeństwa energetycznego
The use of biogas energy technology in the energy security system
Autorzy:
Czarkowska, Alicja
Czarkowski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2081494.pdf
Data publikacji:
2022-03-01
Wydawca:
Collegium Witelona Uczelnia Państwowa
Tematy:
biogaz
biomasa
energia odnawialna
biogazownie rolnicze
Dolny Śląsk
energetyka biogazowa
polityka ekoenergetyczna
rozkład materii organicznej
fermentacja metanowa.
biogas
biomass
renewable energy
agricultural biogas plants
Lower
Silesia
biogas energy
eco-energy policy
decomposition of organic matter
methane
fermentation
Opis:
Wytwarzanie energii elektrycznej oraz cieplnej z biogazu rolniczego stanowi obecnie jedną z najkorzystniejszych metod pozyskiwania energii odnawialnej. Inwestycje w energetykę biogazową na obszarze Polski na dzień dzisiejszy nie znajdują powszechnego zastosowania. Powodem, dla którego Polska w dalszym ciągu jest za liderem produkcji energii z biogazu w Unii Europejskiej, tj. Niemcami, pomimo porównywalnych warunków geograficznych, są przeszkody związane z przepisami prawnymi, uwarunkowaniami społecznymi, a także problemami związanymi ze źródłami finansowania. Celem niniejszego artykułu jest poszerzenie wiedzy w zakresie wytwarzania oraz wykorzystania energii biogazowej pochodzącej z surowców odnawialnych. W artykule przedstawiono możliwe formy finansowania inwestycji w tego rodzaju źródła energii odnawialnej oraz zaprezentowano perspektywy i uwarunkowania rozwoju, a więc korzyści wpływające na środowisko, społeczeństwo i gospodarkę oraz bariery utrudniające ich rozwój.
Electricity and heat production from agricultural biogas is currently one of the most beneficial methods of obtaining renewable energy. Investments in biogas power engineering in Poland are not widespread at the moment. The obstacles connected with legal regulations, social conditions as well as problems connected with the sources of financing are the reasons why Poland is still behind the leader in biogas energy production in the European Union, i.e. Germany, despite its comparable geographical conditions. The aim of this article is to broaden the knowledge of production and use of biogas energy from renewable resources. The article presents possible forms of financing investments in this type of renewable energy source and presents perspectives and conditions of its development, i.e. benefits affecting the environment, society and economy as well as barriers hindering their development.
Źródło:
Zeszyty Naukowe Państwowej Wyższej Szkoły Zawodowej im. Witelona w Legnicy; 2021, 4, 41; 11-34
1896-8333
Pojawia się w:
Zeszyty Naukowe Państwowej Wyższej Szkoły Zawodowej im. Witelona w Legnicy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Current State, Challenges and Perspectives of Biological Production of Hydrogen in Dark Fermentation Process in Poland
Autorzy:
Kozłowski, Kamil
Lewicki, Andrzej
Malińska, Krystyna
Wei, Qiao
Powiązania:
https://bibliotekanauki.pl/articles/124446.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
renewable energy sources
biohydrogen
dark fermentation
wastes management
biogas plants
Opis:
The increasing demand for electrical energy and environmental concerns associated with conventional means of its generation drive the interest in alternative fuels. Biohydrogen, widely considered as fuel of the future, is one of such alternatives. To date, research results suggest that biological routes are the most promising for hydrogen production, especially dark (hydrogen) fermentation. Hydrogen fermentation can be performed with agricultural and food processing wastes as substrates. In this paper the most important factors influencing dark fermentation are reviewed and analyzed. These are: pH, partial pressure, temperature, and retention time. The biohydrogen generation efficiency is also presented with respect to different substrates. It should be also pointed out that many factors are still unknown; thus, the process requires conducting further research.
Źródło:
Journal of Ecological Engineering; 2019, 20, 2; 146-160
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fertilizer value and energy value of multi-component digestate pulp and the possibility of its aggregation
Wartość nawozowa i wartość energetyczna wieloskładnikowej pulpy pofermentacyjnej oraz możliwości jej agregacji
Autorzy:
Adamski, M.
Herkowiak, M.
Mioduszewska, N.
Osuch, E.
Osuch, A.
Niedbała, G.
Piekutowska, M.
Przygodziński, P.
Powiązania:
https://bibliotekanauki.pl/articles/334838.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
fermentation pulp
aggregation
fertilizer value
energy value
pulpa pofermentacyjna
agregacja
wartość nawozowa
wartość energetyczna
Opis:
The aim of the research was to indicate the possibility of using digestate which was obtained in the process of biogas production and the analysis of the effects of the aggregation process using rolling. The characteristics of fertilizers were determined based on the analysis of the basic properties of post-fermentation pulp such as: dry matter, organic matter, pH, C: N ratio, content of macroelements. The analyzes were carried out for a mixture of excess substrates and elements of food and feed processing. A narrow C: N ratio and a near-neutral pH were indicated. The content of total nitrogen (1.8%) allows the soil application of digestate as a soil improver. The ratio N: P: K (1: 0.53: 0.61) indicates potassium deficiency. The combustion heat was determined with the result of 17.20 MJ·kg-1. The obtained values of humidity and combustion heat were used to determine the net calorific value of digestate equal to 15.80 MJ·kg-1. The spherical granulate was obtained using the coating method. For the moisture content of the digestate 30% m / m granules were obtained in the size range from 1.5 to 4.5 mm.
Celem badań było wskazanie możliwości zagospodarowania pofermentu pozyskanego w procesie wytwarzania biogazu oraz analiza efektów procesu agregowania obtaczaniem. W ramach realizacji celu pracy wskazano szereg zadań szczegółowych. Analizy przeprowadzono dla mieszanki substratów nadmiarowych i elementów procesów przetwórczych żywności i pasz. Określono cechy nawozowych na podstawie analizy podstawowych własności pulpy pofermentacyjnej takich jak: materia sucha, materia organiczna, pH, stosunek C:N, zawartość makroskładników pokarmowych. Wyznaczono wąski stosunek C:N oraz odczyn zbliżony do obojętnego. Zawartość azotu całkowitego (1,8%) pozwala na doglebowe zastosowanie pofermentu jako ulepszacz glebowy. Stosunek N:P:K (1:0,53:0,61) wskazuje niedobór potasu. Ciepło spalania wyznaczono uzyskując wynik 17,20 MJ·kg-1. Za pomocą uzyskanych wartości wilgotności oraz ciepła spalania określono wartość opałową pofermentu wynoszącą 15,80 MJ·kg-1. Przy zastosowaniu metody obtaczania uzyskano granulat sferyczny. Dla poziomu wilgotności pofermentu 30% m/m uzyskano granule w zakresie wielkości od 1,5 do 4,5 mm.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 17-23
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skuteczność wytwarzania biogazu z wybranych gatunków roślin energetycznych w procesie fermentacji metanowej wspomaganej promieniowaniem mikrofalowym
Effectiveness of biogas production from selected energy crops by anaerobic methane digestion supported by microwave radiation
Autorzy:
Zieliński, M.
Dębowski, M.
Kisielewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/237277.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
methane fermentation
energy crops
maize silage
biomass
microwave radiation
athermal effects
biogas
methane
fermentacja metanowa
rośliny energetyczne
kiszonka kukurydzy
biomasa
promieniowanie mikrofalowe
efekty atermiczne
biogaz
metan
Opis:
W pracy przedstawiono innowacyjną metodę mikrofalowego ogrzewania reaktorów beztlenowych do wytwarzania biogazu z roślin energetycznych (kiszonki kukurydzy (Zea maize), lucerny (Medicago L.), ślazowca pensylwańskiego (Sida hermaphrodita (L.) Rusby), miskanta olbrzymiego (Miscanthus x giganteus) oraz sianokiszonka). Największą wydajnością wytwarzania biogazu wynoszącą 680 dm3/kg (w odniesieniu do suchej masy organicznej osadu) charakteryzowała się kiszonka kukurydzy, natomiast najmniej biogazu (331 dm3/kg) uzyskano podczas fermentacji kiszonki lucerny. Wykazano, że promieniowanie mikrofalowe poprawiło wydajność wytwarzania metanu z kiszonki kukurydzy, sianokiszonki i kiszonki miskanta, przy czym w przypadku kiszonki kukurydzy zawartość metanu w biogazie wzrosła o 18% (wydajność procesu zwiększyła się z 361 dm3/kg do 426 dm3/kg). W eksperymentach z użyciem kiszonki lucerny i ślazowca nie zaobserwowano wpływu promieniowania mikrofalowego na zwiększenie skuteczności wytwarzania biogazu i metanu w procesie fermentacji. Jakkolwiek natura atermicznych oddziaływań mikrofal nie została jeszcze jednoznacznie wyjaśniona, to jednak przeprowadzone badania wskazują na możliwość intensyfikacji procesów biochemicznych w reaktorach beztlenowych w celu zwiększenia skuteczności wytwarzania biogazu i metanu z roślin energetycznych.
The paper presents an innovative method of microwave heating applied to anaerobic reactors for the manufacture of biogas from the energy crops silages (maize (Zea maize), alfalfa (Medicago L.), sida (Sida hermaphrodita (L) Rusby), giant miscanthus (Miscanthus x giganteus) and hay silage). Maize silage was demonstrated to be the most efficient in terms of biogas production, which amounted to 680 dm3/kg (per dry mass – VSS), while the least biogas (331 dm3/kg) was obtained during the fermentation of alfalfa silage. The microwave radiation clearly improved the capacity of maize, ray silage and of giant miscanthus to produce methane. For the maize silage, the methane content in the biogas increased by 18% (process performance increased from 361 dm3/kg to 426 dm3/kg). In case of alfalfa and sida silage, no effect of microwave radiation on the increase in effectiveness of methane and biogas production by fermentation process was observed. Though the nature of athermic microwave effects has not yet been clearly explained, the research conducted implies a possibility to intensify biochemical processes in anaerobic reactors in order to improve the effectiveness of biogas and methane production from the energy crops.
Źródło:
Ochrona Środowiska; 2018, 40, 4; 43-48
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of out-of-date frozen food as a substrate for biogas in anaerobic methane fermentation
Autorzy:
Pietrzyk, D.
Klepacz-Smółka, A.
Powiązania:
https://bibliotekanauki.pl/articles/105834.pdf
Data publikacji:
2018
Wydawca:
Centrum Badań i Innowacji Pro-Akademia
Tematy:
renewable source of energy
biogas
methane fermentation
methane
inoculum
biochemical methane potential
BMP
out-of-date frozen food
odnawialne źródła energii
biogaz
fermentacja metanowa
metan
inokulum
Opis:
The declining quantity of fossil fuels and the increasing demand for energy are two of the many problems that are affecting current times. This is why there is an increasing interest in and introduction of operations related to renewable sources of energy. One of many such possibilities is to conduct the biomass methane fermentation process and to obtain clean energy in the form of biogas. The aim of this research was to analyse the biogas-generating potential (Biochemical Methane Potential) of out-of-date frozen products in the laboratory anaerobic fermentation process and the near-infrared method with appropriate Biochemical Methane Potential calibration. The results obtained showed that selected frozen products are an excellent material for use as substrates resulting in the production of high quality biogas. It gives the opportunity to continue research, mainly in terms of applications, e.g. for biogas plants, using other available products on the market and the selection of their mixtures.
Źródło:
Acta Innovations; 2018, 29; 67-75
2300-5599
Pojawia się w:
Acta Innovations
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konwersja biomasy w energię w biogazowni rolniczej
The conversion of biomass into energy in farm biogas plant
Autorzy:
Żygadło, M.
Madejski, R.
Powiązania:
https://bibliotekanauki.pl/articles/357409.pdf
Data publikacji:
2016
Wydawca:
Politechnika Śląska
Tematy:
renewable energy
agricultural biogas plants
conditions for methane fermentation
odnawialne źródła energii
biogazownie rolnicze
warunki fermentacji metanowej
Opis:
According to the national action plan for energy from renewable sources, the share of RES in the gross final energy consumption will reach 15%by 2020. This will have a significant impact on changing the structure of fuel consumption. Biomass has the biggest share of renewable energy sources and accounts for more than 2/3 of all RES. This is mainly due to the availability of substrates for energy production and the relatively low capital expenditure compared to the necessary inputs to enable the recovery of energy from other renewable sources. The production and use of energy from agricultural sources is the solution to many ecological problems and entails significant economic and social benefits at a local level as well as nationally. In terms of social development of the biogas industry, it is an opportunity for creating additional jobs in the countryside, activating of rural areas, increasing the revenue from local taxes, as well as increasing the investment attractiveness of the region. The biogas production can meet the benchmarks of climate and energy protection and reduce emissions of methane and other greenhouse gases.
Zgodnie z krajowym planem działania w zakresie energii ze źródeł odnawialnych udział w końcowym zużyciu energii brutto do roku 2020 osiągnie 15%. Wpłynie to istotnie na zmianę struktury zużycia paliw. Największy udział w odnawialnych źródłach energii ma biomasa, która stanowiponad 2/3wszystkichOZE. Wynika to głównie z dostępności substratów do produkcji energii oraz stosunkowo niskich nakładów inwestycyjnych w porównaniu do niezbędnych nakładów umożliwiających odzysk energii z innych źródeł odnawialnych. Produkcja i wykorzystanie energii pochodzenia rolniczego niesie ze sobą znaczne korzyści ekonomiczne, energetyczne oraz społeczne na szczeblu lokalnym, jak również krajowym. W aspekcie społecznym rozwój branży biogazowej to szansa na dodatkowe miejsca pracy na wsi, aktywizację terenów wiejskich, wzrost przychodów z tytułu podatków lokalnych, jak również zwiększenie atrakcyjności inwestycyjnej regionu. Produkcja biogazu pozwala zrealizować założenia klimatyczno- energetyczne, zmniejszyć emisję metanu i innych gazów cieplarnianych.
Źródło:
Archiwum Gospodarki Odpadami i Ochrony Środowiska; 2016, 18, 2; 55-66
1733-4381
Pojawia się w:
Archiwum Gospodarki Odpadami i Ochrony Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wyznaczenie potencjału energetycznego biogazu w wybranym gospodarstwie rolnym
Determination of the energy potential of biogas in selected farm household
Autorzy:
Sikora, J.
Tomal, A.
Powiązania:
https://bibliotekanauki.pl/articles/101440.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
biogaz
biogazownia rolnicza
fermentacja metanowa
odnawialne źródła energii
biogas
agricultural biogas plant
methane fermentation
renewable energy sources
Opis:
Produkcja biogazu w Polsce corocznie zwiększa swój udział w wytwarzaniu energii odnawialnej kraju, a także stanowi doskonałą metodę zagospodarowania odpadów organicznych z rolnictwa oraz przemysłu rolno-spożywczego. Powstały w wyniku fermentacji metanowej biogaz jest wykorzystywany do produkcji energii elektrycznej jak i cieplnej. Celem pracy było wyznaczenie ilości wydzielanego biogazu, z dostępnej biomasy, uzyskanej w wyniku działalności rolniczej gospodarstwa, zlokalizowanego w miejscowości Kazimierza Wielka. Na podstawie otrzymanych wyników obliczono ilość energii możliwą do uzyskania z dostępnej biomasy w gospodarstwie rolnym. Wszystkie badania nad jakością i ilością wydzielonego biogazu zostały przeprowadzone w laboratorium biogazowni znajdującym się na Wydziale Inżynierii Produkcji i Energetyki Uniwersytetu Rolniczego w Krakowie. Badaniu zostały poddane następujące frakcje pochodzenia rolniczego: liście buraka cukrowego, korzeń buraka cukrowego, słoma z kukurydzy oraz kiszonka z kukurydzy. Na podstawie dostępnych materiałów oraz przeprowadzonych badań, dobrano generator tłokowy o mocy 350 kW a całkowita energia możliwa do wytworzenia wynosi ok. 2806 MWh. Ma podstawie przeprowadzonej analizy wynika, że badane gospodarstwo rolne może prowadzić działalność związaną z produkcją biogazu, która będzie stanowić dywersyfikacje jego dochodów.
The production of biogas in Poland each year is increasing its share in renewable energy in the country, it is n excellent method of waste disposal as well. Biogas produced in the process of methane fermentation is used to produce electricity and heat. Determining the amount of biogas produced as a result of methane fermentation of available biomas generated from a selected farm household. This research disseratation was written on the basis of the available literature concerning the production of biogas and renewable energy sources the research methodology was based on the German standard DIN 38414. Using the available materials and research studies, a 350 kW piston generator was chosen; the total energy possible to be generated is approx 2806 MWh. As is clear from the foregoing, farm household under study can engage in the production of biogas,, which will provide additional income for farmers.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2016, III/2; 971-982
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Giant Miscanthus as a Substrate for Biogas Production
Autorzy:
Kazimierowicz, J.
Dzienis, L.
Powiązania:
https://bibliotekanauki.pl/articles/125065.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
energy crops
biogas
methane fermentation
giant Miscanthus
Opis:
One unconventional source of energy, which may be applied in numerous production and municipal processes, is energy accumulated in plants. As a result of photosyn-thesis, solar energy is transformed into chemical energy accumulated in a form of carbohydrates in the plant biomass, which becomes the material that is more and more sought by power distribution companies and individual users. Currently, a lot of re-search on obtaining biogas from energy crops is conducted. Corn silage is used most often, however, there is a demand for alternative plants. The experiment described in this article was conducted with the use of giant Miscanthus (Miscanthus Giganteus).
Źródło:
Journal of Ecological Engineering; 2015, 16, 4; 139-142
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie ziarna pszenżyta w przemyśle fermentacyjnym
Use of triticale in the fermentation industry
Autorzy:
Achremowicz, B.
Puchalski, C.
Haber, T.
Powiązania:
https://bibliotekanauki.pl/articles/228130.pdf
Data publikacji:
2015
Wydawca:
Wyższa Szkoła Menedżerska w Warszawie
Tematy:
pszenżyto
przemysł fermentacyjny
browarnictwo
gorzelnictwo
energia odnawialna
bioetanol
triticale
fermentation industry
brewing
distilling
renewable energy
bioethanol
Opis:
Zainteresowanie ziarnem pszenżyta jako surowcem dla przemysłu fermentacyjnego uwarunkowane jest zawartością skrobi i wysoką aktywnością amylolityczną. Początkowo badania prowadzono w celu wykorzystania ziarna jako słodu piwowarskiego i gorzelniczego. Uzyskane rezultaty nie potwierdziły możliwości szerszego zastosowania tego ziarna w przemyśle. Wykorzystanie pszenżyta do produkcji energii odnawialnej w postaci bioetanolu stwarza wymierne korzyści dla rolnictwa i ekologii. Prowadzone są również prace hodowlane zmierzające do uzyskania nowych odmian o wyższej wydajności bioetanolu.
Interest in triticale grain as raw material for fermentation industry is subject to a high content of starch and amylolytic activity. Initially, the study was carried out in order to use the grain as beer and malt distillers. The results obtained were not, however, wider application in industry. Triticale new opportunities for renewable energy production in the form of bioethanol create tangible benefits for agriculture and ecology. Work is also the breeding efforts to obtain new varieties with higher yields of bioethanol.
Źródło:
Postępy Techniki Przetwórstwa Spożywczego; 2015, 1; 95-98
0867-793X
2719-3691
Pojawia się w:
Postępy Techniki Przetwórstwa Spożywczego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technological effectiveness of methane fermentation of prairie cordgrass (Spartina pectinata)
Efektywność technologiczna procesu fermentacji metanowej spartiny preriowej (Spartina pectinata)
Autorzy:
Dębowski, M.
Dudek, M.
Zieliński, M.
Grala, A.
Powiązania:
https://bibliotekanauki.pl/articles/127451.pdf
Data publikacji:
2013
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
Spartina pectinata
anaerobic process
biogas
methane fermentation
renewable energy
Sparina pectinata
proces beztlenowy
biogaz
fermentacja metanowa
energia odnawialna
Opis:
This study was aimed at identifying the feasibility of using prairie cordgrass (Spartina pectinata) in processes of methane fermentation. Effectiveness of the anaerobic process including the quantity and composition of biogas produced and reaction kinetics was determined based on respirometric measurements. Fermentation was run under mesophilic conditions at the initial tank loading with a feedstock of organic compounds ranging from 0.5 to 1.5 g o.d.m./dm3 · d. Experiments were divided into two stages, with plant part being the criterion of division. At stage I, model fermentation tanks were fed the assumed quantities of pre-treated aerial part (roof), whereas at stage II - with the underground part (root) of prairie cordgrass. Before the exact process of anaerobic decomposition, the substrate was subject to mechanical disintegration in a ball grinder. For comparative purposes, maize silage (Zea mays) - being the main plant substrate used in agricultural biogas works, was subject to methane fermentation under the same conditions (stage III). The study demonstrated that the effectiveness of the methane fermentation process was directed influenced by the type of substrate tasted. The highest technological effects including biogas production and its qualitative composition were noted in the case of maize silage and the aerial part of prairie cordgrass. Significantly lower effectiveness of production of gaseous metabolites of anaerobes was determined at the stage when the exploited fermentation tanks were fed with biomass of the underground part of test plant. The course and final outcomes of the fermentation process were also directly affected by the applied loading of fermentation tanks with a feedstock of organic matter.
Celem prowadzonych badań było określenie możliwości wykorzystania spartiny preriowej (Spartina pectinata) w procesach fermentacji metanowej. Efektywność procesu beztlenowego, związaną z ilością oraz składem produkowanego biogazu, a także kinetyką reakcji, określono na podstawie pomiarów respirometrycznych. Fermentacja przebiegała w warunkach mezofilowych przy początkowym obciążeniu komory ładunkiem związków organicznych w zakresie od 0,5 do 1,5 g s.m.o./dm3 · d. Doświadczenia podzielono na dwa etapy, których kryterium podziału była wykorzystana część testowanej rośliny. W etapie I do modelowych komór fermentacyjnych wprowadzono założone ilości wstępnie przygotowanej części nadziemnej, natomiast w etapie II analizowano możliwość wykorzystania części podziemnej Spartiny preriowej. Przed właściwym procesem beztlenowego rozkładu substrat został poddany mechanicznemu rozdrobnieniu w młynie kulowym. W celu porównawczym w tych samych warunkach technologicznych prowadzono proces fermentacji metanowej kiszonki kukurydzy (Zea mays), jako podstawowego substratu roślinnego stosowanego w systemach biogazowni rolniczych (etap III). W trakcie badań stwierdzono, iż efektywność procesu fermentacji metanowej była bezpośrednio uzależniona od rodzaju testowanego substratu. Największe efekty technologiczne związane z produkcją biogazu oraz jego składem jakościowym stwierdzono w przypadku testowania kiszonki kukurydzy oraz części nadziemnej Spartiny preriowej. Istotnie niższą wydajność wytwarzania gazowych produktów metabolizmu bakterii beztlenowych zanotowano w etapie, w którym do eksploatowanych komór fermentacyjnych dozowano część podziemną testowanej biomasy roślinnej. Bezpośredni wpływ na przebieg oraz efekty końcowe procesu miało również testowane obciążenie komór ładunkiem suchej masy organicznej.
Źródło:
Proceedings of ECOpole; 2013, 7, 1; 49-58
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości energetycznego wykorzystania biomasy słonecznika bulwiastego (Helianthus tuberosus L.)
Possibility of the energy use of Jerusalem artichoke (Helianthus tuberosus L.)
Autorzy:
Kowalczyk-Juśko, A.
Cholewińska, E.
Powiązania:
https://bibliotekanauki.pl/articles/311402.pdf
Data publikacji:
2012
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
słonecznik bulwiasty
biomasa
wartość energetyczna
spalanie
fermentacja
Jerusalem artichoke
biomass
energy
combustion
fermentation
Opis:
W artykule zaprezentowano możliwości energetycznego wykorzystania jednej z wieloletnich roślin - słonecznika bulwiastego. Ten mało znany w Polsce gatunek, nazywany potocznie topinamburem, może znaleźć zastosowanie w energetyce jako źródło biomasy stałej lub surowiec do produkcji bioetanolu lub biogazu. Do jego zalet należy duża trwałość, małe wymagania, wielokierunkowe zastosowanie i znaczny potencjał plonowania. Ocena właściwości nadziemnych części tej rośliny wykazała, że są one przydatne do spalania, a skład chemiczny i wartość energetyczna jest zbliżona do innych rodzajów biomasy. Kiszonka ze świeżych części nadziemnych oraz bulwy przydatne są do fermentacji metanowej, zaś same bulwy - do produkcji bioetanolu.
The paper presents the possibility of the energy use of one of the perennial plants - Jerusalem artichoke. This little known in Poland species, commonly known as „topinambur”, can be used in the energy sector as a source of solid biomass or raw material for the production of bio-ethanol or biogas. Its advantages include high durability, low requirements, multi-applicable and significant potential for yielding. Evaluation of the above-ground parts of the plant showed that they are suitable for combustion, and the chemical composition and the energy value is similar to other types of biomass. Silage of fresh biomass and tubers are useful for methane fermentation, and tuber themselves - for the production of bioethanol.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2012, 13, 10; 232-234
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structural changes of corn starch during fuel ethanol production from corn flour
Autorzy:
Szymanowska-Powalowska, D.
Lewandowicz, G.
Blaszczak, W.
Szwengiel, A.
Powiązania:
https://bibliotekanauki.pl/articles/80589.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
structural change
corn starch
native starch
ethanol production
simultaneous saccharification
simultaneous fermentation
enzymatic hydrolysis
energy consumption
gelatinization
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2012, 93, 3
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Szwedzki model rozwoju innowacyjnych technologii biogazowych oparty na zarządzaniu odpadami
Autorzy:
Michalska, K.
Kacprzak, A.
Powiązania:
https://bibliotekanauki.pl/articles/106037.pdf
Data publikacji:
2012
Wydawca:
Centrum Badań i Innowacji Pro-Akademia
Tematy:
odnawialne źródła energii
biogaz
technologia biogazowa
odpady
fermentacja
elektrownia biogazowa
oczyszczalnia ścieków
renewable energy sources
biogas
biogas technology
wastes
fermentation
biogas power plants
wastewater treatment plant
Opis:
Niniejszy artykuł opisuje Szwedzki Model innowacyjnego systemu produkcji biogazu, jako pozytywnego przykładu efektywnego i zrównoważonego systemu zarządzania odpadami połączonego z wytwarzaniem biogazu oraz promocją czystej energii. Na bazie szwedzkich rozwiązań zaproponowano profil polskiego systemu biogazowego. Obejmuje on mikro-biogazownie zlokalizowane na terenach inwestycyjnych istniejących przedsiębiorstw rolno-spożywczych, z jednoczesnym uwzględnieniem lokalnego potencjału i potrzeb w zakresie efektywnej produkcji biogazu. Niniejsze opracowanie nie wyczerpuje tematu; stanowi ono jedynie krótki zarys problemu oraz prezentację rozwiązań możliwych do zastosowania w Polsce. Z założenia przeznaczone jest dla doradców rządowych, inwestorów, naukowców, przedstawicieli społeczności oraz dla tych wszystkich, dla których tematyka energii odnawialnej nie jest obojętna.
Źródło:
Acta Innovations; 2012, 3; 39-70
2300-5599
Pojawia się w:
Acta Innovations
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies