Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feature reconstruction" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Reconstruction of high-dimensional data using the method of probabilistic features combination
Autorzy:
Jakóbczak, D. J.
Powiązania:
https://bibliotekanauki.pl/articles/118528.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
image retrieval
pattern recognition
data modeling
vector interpolation
PFC method
feature reconstruction
probabilistic modeling
pobieranie obrazu
rozpoznawanie wzorców
modelowanie danych
interpolacja wektora
metoda PFC
funkcja rekonstrukcji
modelowanie probabilistyczne
Opis:
Proposed method, called Probabilistic Features Combination (PFC), is the method of multi-dimensional data modeling, extrapolation and interpolation using the set of high-dimensional feature vectors. This method is a hybridization of numerical methods and probabilistic methods. Identification of faces or fingerprints need modeling and each model of the pattern is built by a choice of multi-dimensional probability distribution function and feature combination. PFC modeling via nodes combination and parameter γ as N-dimensional probability distribution function enables data parameterization and interpolation for feature vectors. Multidimensional data is modeled and interpolated via nodes combination and different functions as probability distribution functions for each feature treated as random variable: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function.
Autorska metoda Probabilistycznej Kombinacji Cech - Probabilistic Features Combination (PFC) jest wykorzystywana do interpolacji i modelowania wielowymiarowych danych. Węzły traktowane są jako punkty charakterystyczne N-wymiarowej informacji, która ma być odtwarzana (np. obraz). Wielowymiarowe dane są interpolowane lub rekonstruowane z wykorzystaniem funkcji rozkładu prawdopodobieństwa: potęgowych, wielomianowych, wykładniczych, logarytmicznych, trygonometrycznych, cyklometrycznych.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2016, 9; 37-50
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trajectory determination for pipelines using an inspection robot and pipeline features
Autorzy:
Zhang, Shuo
Dubljevic, Stevan
Powiązania:
https://bibliotekanauki.pl/articles/1849012.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
trajectory determination
pipeline inspection robot
pipeline feature
path reconstruction algorithm
Opis:
Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection. Although accurate trajectory of a ground pipeline usually can be directly measured by using global positioning system technology, it is much difficult to determine trajectory for an underground pipeline where global positioning system signal cannot be received. In this paper, a new method to determine trajectory for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error propagation model are established for estimating position, velocity and attitude of the robot. The path reconstruction algorithm for the robot is proposed to improve accuracy of trajectory determination based on pipeline features. The experiment is given to illustrate that the position errors of the proposed method are less than 40% of that of the standard extended Kalman filter.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 439-453
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trajectory determination for pipelines using an inspection robot and pipeline features
Autorzy:
Zhang, Shuo
Dubljevic, Stevan
Powiązania:
https://bibliotekanauki.pl/articles/1849098.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
trajectory determination
pipeline inspection robot
pipeline feature
path reconstruction algorithm
Opis:
Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection. Although accurate trajectory of a ground pipeline usually can be directly measured by using global positioning system technology, it is much difficult to determine trajectory for an underground pipeline where global positioning system signal cannot be received. In this paper, a new method to determine trajectory for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error propagation model are established for estimating position, velocity and attitude of the robot. The path reconstruction algorithm for the robot is proposed to improve accuracy of trajectory determination based on pipeline features. The experiment is given to illustrate that the position errors of the proposed method are less than 40% of that of the standard extended Kalman filter.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 439-453
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of patterns on image-based modelling of texture-less objects
Autorzy:
Hafeez, J.
Jeon, H.-J.
Hamacher, A.
Kwon, S.-C.
Lee, S.-H.
Powiązania:
https://bibliotekanauki.pl/articles/221814.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
structure-from-motion
feature detection
patterns analysis
3D reconstruction
surface comparison
Opis:
The task of generating fast and accurate three-dimensional (3D) models of objects or scenes through a sequence of non-calibrated images is an active field of research. The recent development in algorithm optimization has resulted in many automatic solutions that can provide an accurate 3D model from texture-full objects. Structure-from-motion (SfM) is an image-based method that uses discriminative point-based feature identifier, such as SIFT, to locate feature points in the images. This method faces difficulties when presented with the objects made of homogenous or texture-less surfaces. To reconstruct such surfaces a well-known technique is to apply an artificial variety by covering the surface with a random texture pattern prior to the image capturing process. In this work, we designed three series of image patterns which are tested based on the contrast and density ratio which increases from the first to the last pattern within the same series. The performance of the patterns is evaluated by reconstructing the surface of a texture-less object and comparing it with the true data. Using the best-found patterns from the experiments, a 3D model of a Moai statue is reconstructed. The experimental results demonstrate that the density and structure of a pattern highly affects the quality of the reconstruction.
Źródło:
Metrology and Measurement Systems; 2018, 25, 4; 755-767
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech emotion recognition using wavelet packet reconstruction with attention-based deep recurrent neutral networks
Autorzy:
Meng, Hao
Yan, Tianhao
Wei, Hongwei
Ji, Xun
Powiązania:
https://bibliotekanauki.pl/articles/2173587.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
speech emotion recognition
voice activity detection
wavelet packet reconstruction
feature extraction
LSTM networks
attention mechanism
rozpoznawanie emocji mowy
wykrywanie aktywności głosowej
rekonstrukcja pakietu falkowego
wyodrębnianie cech
mechanizm uwagi
sieć LSTM
Opis:
Speech emotion recognition (SER) is a complicated and challenging task in the human-computer interaction because it is difficult to find the best feature set to discriminate the emotional state entirely. We always used the FFT to handle the raw signal in the process of extracting the low-level description features, such as short-time energy, fundamental frequency, formant, MFCC (mel frequency cepstral coefficient) and so on. However, these features are built on the domain of frequency and ignore the information from temporal domain. In this paper, we propose a novel framework that utilizes multi-layers wavelet sequence set from wavelet packet reconstruction (WPR) and conventional feature set to constitute mixed feature set for achieving the emotional recognition with recurrent neural networks (RNN) based on the attention mechanism. In addition, the silent frames have a disadvantageous effect on SER, so we adopt voice activity detection of autocorrelation function to eliminate the emotional irrelevant frames. We show that the application of proposed algorithm significantly outperforms traditional features set in the prediction of spontaneous emotional states on the IEMOCAP corpus and EMODB database respectively, and we achieve better classification for both speaker-independent and speaker-dependent experiment. It is noteworthy that we acquire 62.52% and 77.57% accuracy results with speaker-independent (SI) performance, 66.90% and 82.26% accuracy results with speaker-dependent (SD) experiment in final.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; art. no. e136300
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech emotion recognition using wavelet packet reconstruction with attention-based deep recurrent neutral networks
Autorzy:
Meng, Hao
Yan, Tianhao
Wei, Hongwei
Ji, Xun
Powiązania:
https://bibliotekanauki.pl/articles/2090711.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
speech emotion recognition
voice activity detection
wavelet packet reconstruction
feature extraction
LSTM networks
attention mechanism
rozpoznawanie emocji mowy
wykrywanie aktywności głosowej
rekonstrukcja pakietu falkowego
wyodrębnianie cech
mechanizm uwagi
sieć LSTM
Opis:
Speech emotion recognition (SER) is a complicated and challenging task in the human-computer interaction because it is difficult to find the best feature set to discriminate the emotional state entirely. We always used the FFT to handle the raw signal in the process of extracting the low-level description features, such as short-time energy, fundamental frequency, formant, MFCC (mel frequency cepstral coefficient) and so on. However, these features are built on the domain of frequency and ignore the information from temporal domain. In this paper, we propose a novel framework that utilizes multi-layers wavelet sequence set from wavelet packet reconstruction (WPR) and conventional feature set to constitute mixed feature set for achieving the emotional recognition with recurrent neural networks (RNN) based on the attention mechanism. In addition, the silent frames have a disadvantageous effect on SER, so we adopt voice activity detection of autocorrelation function to eliminate the emotional irrelevant frames. We show that the application of proposed algorithm significantly outperforms traditional features set in the prediction of spontaneous emotional states on the IEMOCAP corpus and EMODB database respectively, and we achieve better classification for both speaker-independent and speaker-dependent experiment. It is noteworthy that we acquire 62.52% and 77.57% accuracy results with speaker-independent (SI) performance, 66.90% and 82.26% accuracy results with speaker-dependent (SD) experiment in final.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; e136300, 1--12
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies