Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fault intelligent diagnosis" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Research on intelligent diagnosis method for large-scale ship engine fault in non-deterministic environment
Autorzy:
Feng, D.
Li, Y.
Powiązania:
https://bibliotekanauki.pl/articles/258452.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
non-determinism
large-scale ship engine
fault intelligent diagnosis
Opis:
Aiming at the problem of inaccurate and time-consuming of the fault diagnosis method for large-scale ship engine, an intelligent diagnosis method for large-scale ship engine fault in non-deterministic environment based on neural network is proposed. First, the possible fault of the engine was analyzed, and the downtime fault of large-scale ship engine and the main fault mode were identified. On this basis, the fault diagnosis model for large-scale ship engine based on neural network is established, and the intelligent diagnosis of engine fault is completed. The experiment proved that the proposed method has high diagnostic accuracy, engine fault diagnosis takes only about 3s, with a higher use value.
Źródło:
Polish Maritime Research; 2017, S 3; 200-206
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modified convolutional neural network with global average pooling for intelligent fault diagnosis of industrial gearbox
Diagnostyka błędów przekładni przemysłowych z wykorzystaniem zmodyfikowanej splotowej sieci neuronowej z globalnym uśrednieniem wartości dla poszczególnych kanałów
Autorzy:
Li, Yaxin
Wang, Kesheng
Powiązania:
https://bibliotekanauki.pl/articles/300870.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
modified convolutional neural network
global average pooling
intelligent fault diagnosis
industrial Gearbox
zmodyfikowana splotowa sieć neuronowa
globalne uśrednienie względem kanałów
inteligentna diagnostyka błędów
przekładnia przemysłowa
Opis:
Gearboxes are key transmission components and widely used in various industrial applications. Due to the possible operational conditions, such as varying rotational speeds, long period of heavy loads, etc., gearboxes may easily be prone to failure. Condition Monitoring (CM) has been proved to be an effective methodology to improve the safety and reliability of gearboxes. Deep learning approaches, nowadays, further enable the CM with more powerful capability to exploit faulty information from massive data and make intelligently diagnostic decisions. However, for most of conventional deep learning models, such as Convolutional Neural Network (CNN), a large amount of labelled training data is a prerequisite, while to obtain the labelled data is usually a laborious and time-consuming job and sometimes even unattainable. In this paper, to handle the case of only a limited labelled data is available, a modified convolutional neural network (MCNN) is proposed by integrating global average pooling (GAP) to reduce the number of trainable parameters and simplify the architecture of deep learning model. The proposed MCNN improves the traditional CNN’s ability in fault diagnosis with limited labelled data. Two experimental gearbox datasets are utilized to demonstrate the effectiveness of the proposed MCNN method. Compared with traditional deep learning approaches, namely LSTM, CNN and its variant methods, the experimental results show that the proposed MCNN with higher discrimination and generalization ability in fault classification and diagnostics under the scenario of limited labelled training samples.
Przekładnie stanowią kluczowe elementy układów napędowych i jako takie znajdują szerokie zastosowane w przemyśle. Ze względu na warunki eksploatacji, takie jak różne prędkości obrotowe czy długie okresy pracy pod dużym obciążeniem itp., przekładnie mogą łatwo ulegać uszkodzeniom. Udowodniono, że monitorowanie stanu skutecznie poprawia bezpieczeństwo i niezawodność przekładni. Podejścia oparte na uczeniu głębokim umożliwiają ponadto monitorowanie stanu z większym wykorzystaniem informacji o błędach pochodzących z dużych zbiorów danych i podejmowanie inteligentnych decyzji diagnostycznych. Jednak w przypadku większości konwencjonalnych modeli uczenia głębokiego, takich jak splotowe sieci neuronowe (convolutional neural networks, CNN), wymagana jest duża ilość etykietowanych danych uczących, których pozyskanie jest zwykle zadaniem praco- i czasochłonnym, a czasem wręcz niemożliwym do wykonania. W niniejszej pracy, przedstawiono zmodyfikowaną splotową sieć neuronową (modified convolutional neural network, MCNN), która rozwiązuje problem dostępności danych etykietowanych poprzez zastosowanie globalnego uśrednienia względem kanałów (global average pooling), co pozwala na zmniejszenie liczby możliwych do wyuczenia parametrów i uproszczenie architektury modelu głębokiego uczenia. W porównaniu do tradycyjnych sieci CNN, proponowana sieć MCNN zwiększa możliwości diagnozowania błędów przy ograniczonych danych etykietowanych. Skuteczność proponowanej metody wykazano na przykładzie dwóch zbiorów danych doświadczalnych dotyczących błędów przekładni. Wyniki eksperymentalne pokazują, że, w porównaniu z tradycyjnymi metodami uczenia głębokiego, takimi jak LSTM, CNN oraz warianty tej ostatniej, proponowane podejście MCNN daje większe możliwości rozróżniania i uogólniania podczas klasyfikacji i diagnostyki błędów w przypadku ograniczonej dostępności etykietowanych danych uczących.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 63-72
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid fault diagnosis of railway switches based on the segmentation of monitoring curves
Hybrydowa diagnostyka uszkodzeń zwrotnic kolejowych w oparciu o segmentację krzywych prądowych
Autorzy:
Ou, D.
Tang, M.
Xue, R.
Yao, H.
Powiązania:
https://bibliotekanauki.pl/articles/302039.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
switch system
fault detection
fault diagnosis
intelligent method
układ zwrotnicowy
wykrywanie usterek
diagnozowanie usterek
metoda inteligentna
Opis:
Switches are one of the most important pieces of infrastructure in railway signal systems, and they significantly influence the efficiency and safety of train operation. Currently, the identification of switch failures mainly depends on the experience of railway staff and the use of simple thresholding methods. However, these basic methods are highly inaccurate and frequently result in false and missing alarms. This paper aims to develop a hybrid fault diagnosis (HFD) method for railway switches. The method is an intelligent diagnosis method that uses massive current curves collected by microcomputer monitoring systems. We first divide the switch operation current curves into three segments based on the three mechanical processes that occur during switch operation. Then, a standard curve is selected from the fault-free curves, and common typical faults are ascertained through a microcomputer monitoring system. Finally, derivative dynamic time warping and a quartile scheme are employed to identify fault curves. An experiment based on current curves collected from the Guangzhou Railway Bureau in China demonstrates that the HFD method is extremely accurate and has low false and missing alarm rates. HFD performs better than the studied support vector machine (SVM) and dynamic time warping (DTW) methods, which are widely used for fault diagnosis.
Zwrotnice stanowią jeden z najważniejszych elementów infrastruktury systemów sygnalizacji kolejowej i mają znaczący wpływ na wydajność i bezpieczeństwo eksploatacji pociągów. Obecnie, identyfikacja awarii zwrotnic zależy głównie od doświadczenia personelu kolejowego i opiera się na stosowaniu prostych metod progowania. Jednakże te elementarne metody są wysoce niedokładne i często skutkują fałszywymi alarmami lub brakiem alarmu. Niniejszy artykuł ma na celu opracowanie hybrydowej metody diagnostyki błędów (HFD) dla zwrotnic kolejowych. Metoda ta jest inteligentną metodą diagnostyczną, która wykorzystuje wykresy przebiegu prądowego zebrane przez mikrokomputerowe systemy monitorowania. Najpierw krzywe prądowe działania zwrotnicy dzieli się na trzy segmenty w oparciu o trzy procesy mechaniczne, które zachodzą podczas jej działania. Następnie, spośród krzywych opisujących działanie bezusterkowe, wybiera się przebieg standardowy, a w dalszej kolejności ustala się, z wykorzystaniem mikrokomputerowego systemu monitorowania, najczęściej występujące, typowe błędy działania zwrotnicy. Wreszcie, do identyfikacji krzywych błędów stosuje się schemat kwartylowy oraz metodę derivative dynamic time warping wykorzystującą pochodne do klasyfikacji szeregów czasowych. Eksperyment oparty na krzywych prądowych zebranych przez Guangzhou Railway Bureau w Chinach pokazuje, że metoda HFD jest wyjątkowo dokładna i skutkuje niską liczbą fałszywych i brakujących alarmów. HFD daje lepsze wyniki niż szeroko stosowane do diagnozowania błędów metody maszyny wektorów nośnych (SVM) i dynamic time warping (DTW).
Źródło:
Eksploatacja i Niezawodność; 2018, 20, 4; 514-522
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies