Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fault forecasting" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Aircraft fault forecasting at maintenance service on the basis of historic data and aircraft parameters
Prognozowanie uszkodzeń statków powietrznych dla celów obsługi konserwacyjnej na podstawie ich parametrów oraz danych z eksploatacji
Autorzy:
Pogačnik, B.
Duhovnik, J.
Tavčar, J.
Powiązania:
https://bibliotekanauki.pl/articles/301740.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
konserwacja statków powietrznych
prognozowanie uszkodzeń
metody szczupłego utrzymania ruchu
systemy uczące się
logistyka części zamiennych
aircraft maintenance
fault forecasting
lean methods
machine learning
spare-parts logistics
Opis:
Aircraft maintenance and repair organizations (MROs) have to be competitive and attractive for both existing and new customers. The aircraft ground time at MROs should be as short as possible and cost effective without reducing the quality of the work. Process optimization in MROs requires the continuous improvement of processes and the elimination of non-value-added activities during maintenance checks. There is, on the one hand, an obligation to follow the prescribed procedures and, on the other hand, pressure for time and cost reduction. The aircraft servicing process has been analysed according to a lean methodology. The optimization of logistics processes is recognized as the most promising method for reducing the maintenance service time and costs of spare parts. The probability of aircraft faults is calculated on the basis of historic data from previously completed service projects. Aircraft parameters, such as aircraft type, operator, aircraft age, flight hours, flight cycles, engine type and operation location, are taken into consideration in the fault forecasting. The fault probability is used as an indicator for defining a priority list for the accomplishment of jobs included in the aircraft maintenance service. The proposed methodology was validated and confirmed on four different projects.
Organizacje zajmujące się konserwacją i naprawami statków powietrznych (MRO) muszą dbać o swoją konkurencyjność i atrakcyjność zarówno dla istniejących jak i nowych klientów. Czas trwania obsługi naziemnej w MRO powinien być jak najkrótszy a konserwacja powinna pociągać za sobą jak najmniejsze koszty, bez konieczności obniżania jakości pracy. Optymalizacja procesów przeprowadzanych w MRO wymaga ciągłego doskonalenia oraz eliminacji nieuzasadnionych czynności przeglądowych. Z jednej strony pracownicy MRO muszą przestrzegać określonych procedur, z drugiej zaś strony, ciąży na nich presja redukcji czasu i kosztów obsługi. Proces obsługi statku powietrznego analizowano zgodnie z metodologią szczupłego utrzymania ruchu. Optymalizację procesów logistycznych uznaje się za najbardziej obiecujący sposób redukcji czasu obsługi serwisowej oraz kosztów części zamiennych. Prawdopodobieństwo wystąpienia uszkodzeń statku powietrznego obliczano na podstawie danych historycznych z uprzednio przeprowadzonych prac obsługowych. W prognozowaniu uszkodzeń, uwzględniano takie parametry statku powietrznego, jak typ statku, jego operator, wiek, liczba godzin w powietrzu, liczba cykli lotów, typ silnika oraz miejsce stacjonowania. Prawdopodobieństwo wystąpienia uszkodzeń wykorzystano jako wskaźnik do hierarchizacji zadań obsługi technicznej statku powietrznego. Przydatność proponowanej metodologii zweryfikowano i potwierdzono na przykładzie czterech różnych projektów.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 4; 624-633
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting the global and partial system condition by means of multidimensional condition monitoring methods
Prognozowanie globalnego i cząstkowego stanu za pomocą metod wielowymiarowej diagnostyki maszyn
Autorzy:
Cempel, C.
Powiązania:
https://bibliotekanauki.pl/articles/280840.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
condition monitoring
multidimensional observation
singular value decomposition
generalized fault symptoms
grey models
forecasting
Opis:
Machines have many faults which evolve during their operation. If one observes some number of symptoms during the machine operation, it is possible to capture fault oriented information. One of the methods to extract fault information from such a symptom observation matrix is to apply the Singular Value Decomposition (SVD), obtaining in this way the generalized fault symptoms. The problem of this paper is to find if the total damage symptom, being a sum of all generalized symptoms is the best way to infer on machine condition or is it better to use the first generalized symptom for the same purposes. There were some new software created for this purpose, and two cases of machine condition monitoring considered, but so far it is impossible to state that one of the inference methods is better. Moreover, it seems to the author that both inference methods are complimentary for each other, and should be used together to increase the reliability of diagnostic decision.
Maszyny mają wiele uszkodzeń, które ewoluują podczas ich pracy (życia). Jeśli obserwujemy pewną liczbę symptomów stanu podczas pracy maszyny, to jesteśmy w stanie uchwycić informację uszkodzeniową zorientowaną, za pomocą tzw. symptomowej macierzy obserwacji (SOM). Jedną z metod dalszej ekstrakcji tej informacji diagnostycznej jest zastosowanie rozkładu według wartości szczególnych (SVD) do SOM. Problem postawiony w tej pracy polega na rozstrzygnięciu kwestii, czy w diagnostyce stanu używać uogólnionego symptomu całkowitego uszkodzenia maszyny, czy też posłużyć się tylko uogólnionym symptomem dominującego uszkodzenia. W tym celu stworzono dodatkowe oprogramowanie, dzięki któremu pokazano, że takie dychoto- miczne postawienie kwestii nie jest niewłaściwe. Najlepiej używać obydwa symptomy uogólnione, wtedy nasza wiedza o stanie maszyny jest pełniejsza.
Źródło:
Journal of Theoretical and Applied Mechanics; 2008, 46, 4; 777-797
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The global and partial system condition assessment in multidimensional condition monitoring
Całkowita i cząstkowa ocena stanu w wielowymiarowej diagnostyce maszyn
Autorzy:
Cempel, C.
Powiązania:
https://bibliotekanauki.pl/articles/327240.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
nadzorowanie stanu
obserwacja wielowymiarowa
rozkład SVD
symptomy uogólnione
szare modele
prognozowanie
pewność decyzji
condition monitoring
multidimensional observation
singular value decomposition
generalized fault symptoms
grey models
forecasting
decision reliability
Opis:
Machines have many faults which evolve during its life (operation). Observing some number of symptoms during the machine operation it is possible to capture needed fault oriented information. One of the methods to extract fault information from such symptom observation matrix (SOM) is to apply the singular value decomposition (SVD), obtaining in this way the generalized fault symptoms. The problem of this paper is to use the total damage symptom, being a sum of all generalized symptoms. Also we will use the first generalized symptom as the dominating fault symptom, to infer better on machine condition. There was some new software created for this purpose, and some cases of machine condition monitoring have been considered as examples. Considering these it seems to the author, that both generalized symptoms should be used for the inference on machine condition. They are complimentary each other in some way, and should be used together to increase the reliability of diagnostic decision.
Maszyny mają wiele uszkodzeń, które ewoluują w trakcie ich pracy. Jeżeli obserwujemy pewną liczbę dobranych symptomów w trakcie życia obiektu możemy tą informację o uszkodzeniach wychwycić w zapisie symptomowej macierzy obserwacji (SOM). Ekstrakcja tej informacji uszkodzeniowej jest możliwa za pomocą procedury SVD, która wyodrębnia poszczególne uogólnione symptomy związane z niezależnymi uszkodzeniami w maszynie. Zazwyczaj mamy sytuacje jednego dominującego symptomu i nasze wnioskowanie diagnostyczne może być związane z tym dominującym symptomem, lub też z tzw. uszkodzeniem całkowitym jako suma wszystkich uogólnionych symptomów. Problemem pracy jest właśnie pytanie; czy wziąć pod uwagę jedynie dominujące uszkodzenie, czy też całkowite. Okazuje się z kilku przykładów, że większą pewność decyzji diagnostycznej uzyskamy jeżeli w weźmiemy pod uwagę oba symptomy, symptom całkowitego uszkodzenia jak i dominujący symptom.
Źródło:
Diagnostyka; 2009, 4(52); 23-34
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decomposition of the symptom observation matrix and grey forecasting in vibration condition monitoring of machines
Autorzy:
Cempel, C.
Powiązania:
https://bibliotekanauki.pl/articles/929868.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zużycie maszyn
obserwacja wielowymiarowa
drganie
przestrzeń uszkodzeń
przestrzeń obserwacji
wartość graniczna symptomu
prognozowanie
teoria szarych systemów
machine wear
multidimensional observation
vibration
SVD decomposition
fault space
observation space
symptom limit value
forecasting
grey system theory
Opis:
With the tools of modern metrology we can measure almost all variables in the phenomenon field of a working machine, and many of the measured quantities can be symptoms of machine conditions. On this basis, we can form a symptom observation matrix (SOM) intended for condition monitoring and wear trend (fault) identification. On the other hand, we know that contemporary complex machines may have many modes of failure, called faults. The paper presents a method of the extraction of the information about faults from the symptom observation matrix by means of singular value decomposition (SVD), in the form of generalized fault symptoms. As the readings of the symptoms can be unstable, the moving average of the SOM is applied with success. An attempt to assess the diagnostic contribution of a primary symptom is made, and also an approach to assess the symptom limit value and to connect the SVD methodology with neural nets is considered. Finally, a condition forecasting problem is discussed and an application of grey system theory (GST) to symptom prognosis is presented. These possibilities are illustrated by processing data taken directly from the machine vibration condition monitoring area.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 4; 569-579
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies