Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fair domination" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Fair Domination Number in Cactus Graphs
Autorzy:
Hajian, Majid
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/31343422.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
fair domination
cactus graph
unicyclic graph
Opis:
For k ≥ 1, a k-fair dominating set (or just kFD-set) in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V \ S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer k ≥ 1. The fair domination number, denoted by fd(G), of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, aiming to provide a particular answer to a problem posed in [Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914], we present a new upper bound for the fair domination number of a cactus graph, and characterize all cactus graphs G achieving equality in the upper bound of fd1(G).
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 489-503
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on the Fair Domination Number in Outerplanar Graphs
Autorzy:
Hajian, Majid
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/31348125.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
fair domination
outerplanar graph
unicyclic graph
Opis:
For k ≥ 1, a k-fair dominating set (or just kFD-set), in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V − S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer k ≥ 1. The fair domination number, denoted by fd(G), of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, we present a new sharp upper bound for the fair domination number of an outerplanar graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1085-1093
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fair Total Domination Number in Cactus Graphs
Autorzy:
Hajian, Majid
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/32083904.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
fair total domination
cactus graph
Opis:
For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V\S. The k-fair total domination number of G, denoted by ftdk(G), is the minimum cardinality of a kFTD-set. A fair total dominating set, abbreviated FTD-set, is a kFTD-set for some integer k ≥ 1. The fair total domination number of a nonempty graph G, denoted by ftd(G), of G is the minimum cardinality of an FTD-set in G. In this paper, we present upper bounds for the 1-fair total domination number of cactus graphs, and characterize cactus graphs achieving equality for the upper bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 647-664
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies