- Tytuł:
- Extremal selections of multifunctions generating a continuous flow
- Autorzy:
-
Bressan, Alberto
Crasta, Graziano - Powiązania:
- https://bibliotekanauki.pl/articles/1311646.pdf
- Data publikacji:
- 1994
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
differential inclusion
extremal selection - Opis:
- Let $F:[0,T] × ℝ^n → 2^{ℝ^n}$ be a continuous multifunction with compact, not necessarily convex values. In this paper, we prove that, if F satisfies the following Lipschitz Selection Property: (LSP) For every t,x, every y ∈ c̅o̅F(t,x) and ε > 0, there exists a Lipschitz selection ϕ of c̅o̅F, defined on a neighborhood of (t,x), with |ϕ(t,x)-y| < ε, then there exists a measurable selection f of ext F such that, for every x₀, the Cauchy problem ẋ(t) = f(t,x(t)), x(0) = x₀, has a unique Carathéodory solution, depending continuously on x₀. We remark that every Lipschitz multifunction with compact values satisfies (LSP). Another interesting class for which (LSP) holds consists of those continuous multifunctions F whose values are compact and have convex closure with nonempty interior.
- Źródło:
-
Annales Polonici Mathematici; 1994-1995, 60, 2; 101-117
0066-2216 - Pojawia się w:
- Annales Polonici Mathematici
- Dostawca treści:
- Biblioteka Nauki