Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "extended Kalman filter (EKF)" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Identification of Ship Maneuvering Model Using Extended Kalman Filters
Autorzy:
Shi, C.
Zhao, D.
Peng, J.
Shen, C.
Powiązania:
https://bibliotekanauki.pl/articles/116777.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Manoeuvring
Ship Manoeuvering Model
Kalman filter
extended Kalman filter (EKF)
Ship Manoeuvrability
ship handling simulator
Turning Circle Test
Zig-Zag Test
Opis:
Ship maneuvering models are the keys to the research of ship maneuverability, design of ship motion control system and development of ship handling simulators. For various frames of ship maneuvering models, determining the parameters of the models is always a tedious task. System identification theory can be used to establish system mathematical models by the system’s input data and output data. In this paper, based on the analysis of ship hydrodynamics, a nonlinear model frame of ship maneuvering is established. System identification theory is employed to estimate the parameters of the model. An algorithm based on the extended Kalman filter theory is proposed to calculate the parameters. In order to gain the system’s input and output data, which is necessary for the parameters identification experiment, turning circle tests and Zig-zag tests are performed on shiphandling simulator and the initial data is collected. Based on the Fixed Interval Kalman Smoothing algorithm, a pre-processing algorithm is proposed to process the raw data of the tests. With this algorithm, the errors introduced during the measurement process are eliminated. Parameters identification experiments are designed to estimate the model parameters, and the ship maneuvering model parameters estimation algorithm is extended to modify the parameters being estimated. Then the model parameters and the ship maneuvering model are determined. Simulation validation was carried out to simulate the ship maneuverability. Comparisons have been made to the simulated data and measured data. The results show that the ship maneuvering model determined by our approach can seasonably reflect the actual motion of ship, and the parameter estimation procedure and algorithms are effective.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2009, 3, 1; 105-110
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area
Autorzy:
Bikonis, K.
Demkowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/115987.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Inertial Measurement Unit (IMU)
Urban Area
inertial navigation system (INS)
Global Positioning System GPS
extended Kalman filter (EKF)
pedestrian trajectory
Micro Electro Mechanical Systems (MEMS)
Integration of Navigation
Opis:
The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF) algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2013, 7, 3; 401-406
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parameter identification of ship maneuvering models using recursive least square method based on support vector machines
Autorzy:
Zhu, M.
Hahn, A.
Wen, Y.
Bolles, A.
Powiązania:
https://bibliotekanauki.pl/articles/116455.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
ship manoeuvering
recursive least square method
ship manoeuvering model
ship maneuverability prediction
Support Vector Machines (SVM)
empirical mode decomposition (EMD)
Computational Fluid Dynamics (CFD)
Extended Kalman Filter (EKF)
Opis:
Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS), are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM), is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD) are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2017, 11, 1; 23-29
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Joint Channel and Carrier Estimation Using Extended Kalman Filter
Autorzy:
Hanza, G.
Powiązania:
https://bibliotekanauki.pl/articles/227355.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
extended Kalman filter
EKF
joint channel
carrier estimation
synchronization
digital receiver
Opis:
In this paper a proposal of joint channel and carrier estimation using extended Kalman filter (EKF) is presented. For the proposed algorithm simulations are performed and the results are compared with the separate channel estimation based on the Kalman filter (KF) and carrier estimation based on the extended Kalman filter (EKF).
Źródło:
International Journal of Electronics and Telecommunications; 2013, 59, 1; 33-39
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of the effectiveness of different Kalman filtering methods and smoothers in object tracking based on simulation tests
Autorzy:
Malinowski, M.
Kwiecień, J.
Powiązania:
https://bibliotekanauki.pl/articles/106773.pdf
Data publikacji:
2014
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
Kalman filtering
smoother
extended Kalman filter
derivative-free filtering
Central Difference Kalman Filter
unscented Kalman filter
object tracing
filtr Kalmana
filtracja
rozszerzony filtr Kalmana
EKF
bezśladowy filtr Kalmana
UKF
śledzenie obiektu
Opis:
In navigation practice, there are various navigational architecture and integration strategies of measuring instruments that affect the choice of the Kalman filtering algorithm. The analysis of different methods of Kalman filtration and associated smoothers applied in object tracing was made on the grounds of simulation tests of algorithms designed and presented in this paper. EKF (Extended Kalman Filter) filter based on approximation with (jacobians) partial derivations and derivative-free filters like UKF (Unscented Kalman Filter) and CDKF (Central Difference Kalman Filter) were implemented in comparison. For each method of filtration, appropriate smoothers EKS (Extended Kalman Smoother), UKS (Unscented Kalman Smoother) and CDKS (Central Difference Kalman Smoother) were presented as well. Algorithms performance is discussed on the theoretical base and simulation results of two cases are presented.
Źródło:
Reports on Geodesy and Geoinformatics; 2014, 97; 1-22
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic performance of estimator-based speed sensorless control of induction machines using extended and unscented Kalman filters
Autorzy:
Horváth, K.
Kuslits, M.
Powiązania:
https://bibliotekanauki.pl/articles/1193590.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
induction machine
speed sensorless control
field-oriented control
FOC
non-linear state estimation
load torque estimation
extended Kalman filter
EKF
unscented Kalman filter
UKF
Opis:
This paper presents an estimator-based speed sensorless field-oriented control (FOC) method for induction machines, where the state estimator is based on a self-contained, non-linear model. This model characterises both the electrical and the mechanical behaviours of the machine and describes them with seven state variables. The state variables are estimated from the measured stator currents and from the known stator voltages by using an estimator algorithm. An important aspect is that one of the state variables is the load torque and, hence, it is also estimated by the estimator. Using this feature, the applied estimator-based speed sensorless control algorithm may be operated adequately besides varying load torque. In this work, two different variants of the control algorithm are developed based on the extended and the unscented Kalman filters (EKF, UKF) as state estimators. The dynamic performance of these variants is tested and compared using experiments and simulations. Results show that the variants have comparable performance in general, but the UKF-based control provides better performance if a stochastically varying load disturbance is present.
Źródło:
Power Electronics and Drives; 2018, 3, 38; 129-144
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies